首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The limiting amplitudes of acoustic oscillations in a cylindrical volume of a heat releasing medium in which one or several modes are unstable in the linear approximation are determined. One of the mechanisms limiting the amplitudes of unstable acoustic modes is the transfer of energy from them to damped modes by nonlinear interaction. The nonlinear interactions of plane acoustic waves in a long channel have been considered by Artamonov and Vorob'ev [1]; in the present paper, the interaction of mixed longitudinal—transverse acoustic modes in a closed cylindrical volume is considered. The equations describing the interaction of two and three longitudinal—transverse modes are derived and investigated in the quadratic approximation by the method of slowly varying amplitudes and phases of the oscillations [2]. The treatment is applicable to a high-temperature gas, for which general stability conditions in the linear approximation have been formulated by Artamonov [3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 3–9, September–October, 1982.I should like to express my thanks to K. I. Artamonov (deceased) for suggesting the problem and for scientific supervision and A. P. Vorob'ev for constant interest in the work and helpful advice.  相似文献   

2.
The paper reports results of numerical—experimental investigation of the hydroelastic process in a polyimide pipeline filled with a fluid. The propagation of small perturbations in the fluid is considered in an acoustic approximation based on wave equations. The equations are integrated using the method of characteristics and a two–layer difference scheme. The elastic problem is solved by the finite element method and the Newmark difference –method. The stress—strain state of the pipeline is defined by a superposition of fast rod modes of motion and slow shell modes of motion. Satisfactory agreement between calculated and experimental data is obtained.  相似文献   

3.
Blowing at bluff body base was considered under different conditions and for small amount of blowing this problem was solved using dividing streamline model [1]. The effect of supersonic blowing on the flow characteristics of the external supersonic stream was studied in [2–4]. The procedure and results of the solution to the problem of subsonic blowing of a homogeneous fluid at the base of a body in supersonic flow are discussed in this paper. Analysis of experimental results (see, e.g., [5]) shows that within a certain range of blowing rate the pressure distribution along the viscous region differs very little from the pressure in the free stream ahead of the base section. In this range the flow in the blown subsonic jet and in the mixing zones can be described approximately by slender channel flow. This approximation is used in the computation of nozzle flows with smooth wall inclination [6, 7]. On the other hand, boundary layer equations are used to compute separated stationary flows with developed recirculation regions [8] in order to describe the flow at the throat of the wake. The presence of blowing has significant effect on the flow structure in the base region. An increasing blowing rate reduces the size of the recirculation region [9] and increases base pressure. This leads to a widening of the flow region at the throat, usually described by boundary-layer approximations. At a certain blowing rate the recirculation region completely disappears which makes it possible to use boundary-layer equations to describe the flow in the entire viscous region in the immediate neighborhood of the base section.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 76–81, January–February, 1984.  相似文献   

4.
Certain self-similar problems involving the sudden motion of a wedge which were treated in the linear approximation in [1–3] are studied by the method of matched asymptotic expansions. The nature of the wave boundary of the perturbed region is determined. Second-approximation solutions are constructed which describe flows behind weak shock fronts propagating in a stationary gas and behind fronts of weak discontinuity lines propagating by known uniform flows. A boundary-value problem is formulated whose solution describes, in first approximation, flows in the neighborhoods of points of interaction of the fronts. The existence of similarity rules of flows in these nieghborhoods is estimated. An approximate solution of the problems is given.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 37–47, May–June, 1976.  相似文献   

5.
An effective method is developed for solving the problem of the nonstationary motion of a liquid with plane, cylindrical, and spherical symmetry [1]. It is based on the idea of dividing the region of disturbed motion into two parts and using matched asymptotic expansions. Solutions are presented to typical problems associated with the motion of a piston, and these make it possible to obtain the solution to problems of an explosion in a liquid, oscillations of a bubble, and so forth. It is also shown that the well-known solutions for such problems given, for example, in the book of Naugol'nykh and Roi on the basis of the acoustic approximation with allowance for nonlinear terms are incorrect.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 3–8, March–April, 1980.  相似文献   

6.
A successive approximation method is used to solve the self-similar problem of gas flow accompanying a shock wave propagated through a polytropic gas of variable density. The method is based on a special choice of independent variables and the use of Whitham's approximation [1] as the initial approximation for the motion of the discontinuity. A first approximation for the self-simulation index is calculated which is in good agreement with exact values.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 68–72, September–October 1970.The author wishes to thank S. V. Fal'kovich for suggesting this problem and for his help in the work.  相似文献   

7.
A study is made of the problem of the propagation of infinitesimally small perturbations in a gas stream moving in a channel of variable cross section when the flow cannot be regarded as isentropic and irrotational. The solution is found in the framework of the linear theory of the flow of an ideal gas and the quasi-one-dimensional hydraulic approximation for the steady regime. For irrotational and isentropic perturbations in a nozzle, this problem was considered in [1–4]. In [1], the problem is generalized to take into account entropy perturbations in the nozzle for the case of longitudinal oscillations. The present paper treats arbitrary modes in a nozzle and takes into account not only entropy but also vorticity perturbations in the moving stream. For each of the three perturbation types — acoustic, entropy, and vorticity — the solutions are expanded in series in cylindrical functions. It is shown that in the considered approximation each oscillation mode can be analyzed independently of the others. In the special case of flow in a Laval nozzle, the concept of impedance (admittance), which is widely used in acoustics, is generalized to take into account entropy and vorticity perturbations. The contribution to the flow dynamics of the acoustic, entropy, and vorticity perturbations is estimated numerically for longitudinal and transverse modes.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 91–98, January–February, 1982.  相似文献   

8.
The asymptotic of the motion originating because of shock incidence on a wedge cavity in a metal is investigated as the wave amplitude tends to zero. It has been shown in [1] that the flow is hence divided into two domains. The principal term governing the flow in the first domain agrees with the acoustic approximation. The flow in the second domain is described by incompressible fluid equations in the principal term. Determination of the flow in the second domain is reduced herein to the solution of a singular nonlinear integral equation. A numerical solution is found for a series of values of the cavity aperture.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 129–138, May–June, 1972.  相似文献   

9.
A technique is proposed to determine the thermoviscoelastoplastic axisymmetric stress–strain state of laminated shells made of isotropic and orthotropic materials. The paper deals with processes of shell loading such that both instantaneous elastoplastic and creep strains occur in isotropic materials and elastic and creep strains in orthotropic materials. The technique is developed within the framework of the Kirchhoff–Love hypotheses for a stack of layers with the use of the equations of the geometrically nonlinear theory of shells in a quadratic approximation. The deformation of isotropic materials is described by the equations of the theory of deformation along slightly curved trajectories, while the deformation of orthotropic materials is described by Hooke's law with additional terms allowing for creep. A numerical example is given  相似文献   

10.
A study is made of the propagation of three-dimensional acoustic perturbations in a two-dimensional gas flow in axisymmetric channels of variable cross sectional area at frequencies near the cutoff frequency. The cross sectional area of the channel is assumed to vary slowly along its length. The obtained results are of interest, for example, from the point of view of estimating the level of noise carried through the gas ducts of a jet engine. The singularities of a solution found earlier in [1] (essentially the analog of the WKB approximation) are investigated. These singularities are due to the existence of turning points in the theory of the WKB approximation. The formalism of this theory [2] is used to develop a method for calculating the reflection coefficient of acoustic perturbations; in this approximation, reflection is found to be appreciable only at the channel sections where the frequency is near the cutoff frequency. Calculated examples are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 149–159, November–December, 1980.I am grateful to A. N. Kraiko, who pointed out the connection between the singularities investigated in the present paper and turning points in the theory of the WKB approximation and suggested that the formalism of this theory should be used to calculate the reflection coefficient. Discussions that I had with Kraiko during the work were very helpful.  相似文献   

11.
A theoretical investigation is made into the development of linear internal waves in an exponentially stratified flow of an ideal incompressible fluid in the Boussinesq approximation. The waves are generated by an arbitrarily moving point mass source. The obtained solution is used to investigate three special cases of motion: uniform motion at an angle to the horizontal, nonstationary motion during a finite interval of time, and uniform motion in a circular path. The method of solution of this problem is similar to that used by Wolfe and Lewis [1], who studied the generation of acoustic waves.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 67–74, May–June, 1980.I thank V. V. Sazonov for assistance in the calculations.  相似文献   

12.
The problem of propagation of an acoustic surface Rayleigh wave in an infinite half-space is considered within the framework of the asymmetric theory of elasticity (Cosserat medium). It is assumed that material deformation is described not only by the displacement vector but also by an independent rotation vector. A global analytical solution of the problem in displacements is obtained. A comparative analysis of the solution obtained and the corresponding solution for the classical elastic medium is performed. Macroparameters characterizing the difference of the stress-strain state from that predicted by the classical theory of elasticity are introduced.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 4, pp. 116–124, July– August, 2005.  相似文献   

13.
In this study we use the method of matched asymptotic expansions to obtain an approximate solution of the problem of the nonstationary motion of a lifting surface near a solid wall. The region of flow is provisionally subdivided into characteristic zones, in which, using the appropriate coordinates, we construct asymptotic expansions for the velocity potential, which thereafter coalesce in the regions of common validity. In the first approximation (extremely small heights of flight) the problem reduces to the solution of a Poisson equation in a plane region bounded by the contour of the wing in the horizontal plane with boundary conditions established from the coalescence.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 115–124, November–December, 1977.  相似文献   

14.
The one-dimensional unsteady problem of the variation of the pressure on a rigid wall covered with a thin compressible layer upon which a plane acoustic wave impinges is investigated. The investigation is carried out from two standpoints: without allowance for wave processes in the layer (in this case the layer is modeled by means of a special boundary condition [1] and the pressure on the wall is a continuous function of time) and with allowance for the waves transporting the pressure perturbation from the outer edge of the layer to the wall and back (in this case the pressure on the wall is a piecewise-continuous function of time). A criterion of the proximity of the results of the two approaches is the smallness of the acoustic impedance ratio before interaction begins. This holds true even when the high intensities of the incident waves lead to considerable compression of the layer and an increase in its acoustic impedance.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 139–148, July–August, 1988.  相似文献   

15.
A three-parameter model of turbulence with the transport equation for the transverse turbulent heat flux is complemented by terms taking thermogravity effects into account. The results of a numerical study carried out without using the Boussinesq approximation are compared with known experimental data on rising air flows in vertical heated pipes.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 73–86, March–April, 1996.  相似文献   

16.
Investigations into the convective transport of heat in porous materials are of interest for many applications in connection with the problem of increasing the efficiency of thermal insulation. In [1–5], convection in Isotropic porous media was considered. However, in many cases porous materials have an essential anisotropy of their permeability. Convective heat transfer has been inadequately studied for this case. In [6], the linearized equations were used to study the convection between infinite horizontal planes with a filling of an anisotropic material; the value of the critical Rayleigh number was found, and this agreed satisfactorily with experimental data. In the present paper, we investigate numerically convection between two infinite coaxial cylinders with an anisotropic porous filling, using the equations of convection in the Darcy—Boussinesq approximation [1–3]. The permeability tensor in the annular region is constructed from its principal values, which can be found experimentally. A method of calculation is developed and a parametric study made of the structure of the flow and of the local and averaged characteristics of the heat transfer, which are of interest for the design of thermal insulation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 59–64, January–February, 1980.  相似文献   

17.
Problems of acoustic wave propagation in a plane wave guide whose walls are assumed to be undeformed with the exception of a section of finite length whose bending is described by the thin plate theory equations in the framework of the Kirchhoff-Love hypotheses are considered. The sound-proofing characteristics of the wave guide described and the stability of the forced oscillations of the system considered are investigated. Formulations of the problem of active vibroacoustic protection and the problem for the peristaltic pump are given. Soundproofing in wave guides has been considered in a number of papers, a fairly complete review of which is given in [1].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza., No. 1, pp. 132–139, January–February, 1986.  相似文献   

18.
The propagation of acoustic perturbations (specified in the outlet cross section of a particular channel) along a supersonic jet flowing out of the channel is considered; also considered is acoustic emission from the surface of the jet into the atmosphere. The solution of these problems is obtained by a numerical method on the linear approximation. The laws governing the propagation of the perturbations as a function of the perturbation frequency and other determining parameters are investigated; these parameters include the velocity and temperature of the jet, the velocity of the subsonic accompanying flow in the external medium, and the character of the perturbation in the initial cross section of the jet.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 92–99, March–April, 1977.  相似文献   

19.
The problem investigated is the unsteady problem of the internal waves generated in a two-layer flow by a certain periodic perturbation which leads to small deviations from the basic flow. A method of constructing an approximate solution uniformly valid throughout the region of variation of the variables and the parameters of the problem is indicated. It is confirmed that for large times and near-resonance parameters the motion of the fluid is described by the mixed problem for a cubic Schrödinger equation. Certain qualitative properties of the solution of this nonlinear problem are noted.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 82–90, November–December, 1987.The author is grateful to V. I. Bukreev and to I. V. Sturova for their interest in his work.  相似文献   

20.
The Oberbeck-Boussinesq approximation for concentration convection in a mixture with an infinite number of components is constructed. The features of the formulation of the problem are described in detail. The large-parameter asymptotics are constructed for the linear problem of hydrodynamic stability. The problem is substantially simplified and equations not previously encountered in hydrodynamic stability theory are obtained. In the case of the non self-adjoint problem the asymptotics of the eigenvalues and eigenfunctions are obtained. Numerical results which, in particular, show that the spectrum of the boundary value problem is not connected are presented. The critical values obtained make it possible to solve the important practical problem of improving the process of mixture separation by the isoelectric focusing method.Rostov-on-Don. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 11–20, September–October, 1995.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号