首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hybrid CFD/CAA methods have generally to be used for the numerical simulation of trailing-edge noise (see [9, 20] for instance). This study focuses on the first step of such hybrid methods, which is to predict the unsteady aerodynamic sources by the mean of a 3D unsteady simulation of the flow. Such a simulation is however generally still away from the numerical capabilities of ‘usual’ supercomputers. This paper investigates the use of a zonal LES method (based on the NLDE – Non-Linear Disturbance Equations – technique) for the numerical prediction of the aerodynamic noise sources. This method makes it possible to perform only zonal LES close to the main elements responsible of sound generation, while the overall configuration is only treated by a RANS approach. Attention will be paid to the specific boundary treatment at the interface between the RANS and LES regions. More precisely, the problem of the generation of turbulent inflow conditions for the LES region will be carefully addressed. The method is first assessed in the simulation of a flat plate ended by a blunted trailing-edge, and then applied to the simulation of the flow over a NACA0012 airfoil with blunted trailing-edge.  相似文献   

2.
The computational cost of large eddy simulation (LES) increases rapidly with the Reynolds number when applied to attached boundary layers. This problem can be avoided by use of a Reynolds-averaged Navier–Stokes (RANS) model in the inner part of the boundary layer, which reduces the computational cost drastically. Such hybrid LES/RANS methods yield accurate results in general, but suffer from an artificial buffer layer and a shift in the velocity profile around the modeling interface. This velocity shift can be removed by use of additional forcing, but the results are very sensitive to the forcing amplitude.

The present paper proposes a feedback algorithm which efficiently finds the appropriate amplitude and thus yields accurate flow statistics. The feedback algorithm is relatively robust, both in that it is insensitive to the values of the parameters involved and that it yields accurate results with different forcing fields and for different Reynolds numbers. It is argued that the feedback algorithm is consistent with the underlying assumptions of hybrid LES/RANS and that it does not introduce additional empiricism into the method.  相似文献   

3.
A model for premixed turbulent combustion is investigated using a RANS-approach. The evolution of the flame front is described in terms of the G-equation. The numerical instabilities of the G-field are resolved using a reinitialisation procedure. For the G-points near the flame surface an algorithm proposed by Russo and Smereka [1] and modificated by Düsing [2] is presented. For all other points the standard Sussman algorithm is employed. Fluid properties are conditioned on the flame front position using a burnt-unburnt probability function across the flame front. Computations are performed using the code FASTEST-3D [3] which is a flow solver for a non-orthogonal, block-structured grid. The computational examples include two test cases, the first containing the propagation of two circular merging flames and the second one containing the simulation of the ORACLES-burner [4].  相似文献   

4.
In order to simulate the turbulent combustion process occurring in spark-ignition (IC) engines, it is necessary to provide suitable and numerically economical models, the latter being particularly important in the application to industrial problems. Moreover, these models must deliver sufficiently accurate results for the unsteady operation of spark combustion engines, concerning variable geometries, temperatures, pressures and charge development in different configurations. In this work different turbulent combustion models for premixed hydrocarbon combustion are compared with respect to their ability to accurately predict the propagation of turbulent perfectly premixed flames. As a first configuration a cylinder of constant volume was studied. Transient calculations were used to simulate the propagation of the turbulent flame and to evaluate the resulting turbulent burning velocity. These calculations were performed for a perfect mixture of air and hydrocarbons at stoichiometric mixture and different initial conditions concerning pressure, temperature and turbulence intensity. As a second configuration a stationary turbulent bunsen-type flame with methane fuel was used to validate the turbulent combustion model of [Lindstedt and Vaos, Combust. Flame 116 (1999) 461] at different pressures. Calculated results were then compared to experimental data of [Kobayashi, Tamura, Maruta and Niioka. In: Proceedings of the 26th Symposium on Combustion, 1996, p. 389] and show excellent agreement for the turbulent burning velocity at several pressure levels using only a single set of model parameters.  相似文献   

5.
The present study is focused on large eddy simulations (LES) that use a statistical (RANS) turbulence model near solid walls, and on the artificial buffer layer that is formed at the interface between these two modeling regions. Additional forcing is used to trigger resolved motions in the LES region more quickly, and leads to improved results in several ways. The study investigates the artificial buffer layer and how it changes with the use of forcing in an in-depth manner, with the purpose of increased understanding of the increasingly popular hybrid LES/RANS group of methods.

The artificial buffer layer is shown to extend from below the modeling interface to well above it, in fact up to 20% of the boundary layer thickness for the cases studied here. The artificial buffer layer is found to be similar to the true buffer layer in many aspects, including a high correlation between the streamwise and wall normal velocity components in the ‘superstreaks’. This indicates that while the superstreaks are highly anisotropic and have unphysical length scales, they still contribute to the resolved shear stress. The forcing does not remove the artificial buffer layer, but it does reduce its extent and increases the resolved shear stress. This increase is mainly associated with increased fluctuations of the wall normal velocity.

A simple, low-dimensional forcing model is proposed and tested, with favorable results. The model is simple to implement and easily generalized to more complex geometries.  相似文献   


6.
The qualities of a DES (Detached Eddy Simulation) and a PANS (Partially-Averaged Navier–Stokes) hybrid RANS/LES model, both based on the kω RANS turbulence model of Wilcox (2008, “Formulation of the kω turbulence model revisited” AIAA J., 46: 2823–2838), are analysed for simulation of plane impinging jets at a high nozzle-plate distance (H/B = 10, Re = 13,500; H is nozzle-plate distance, B is slot width; Reynolds number based on slot width and maximum velocity at nozzle exit) and a low nozzle-plate distance (H/B = 4, Re = 20,000). The mean velocity field, fluctuating velocity components, Reynolds stresses and skin friction at the impingement plate are compared with experimental data and LES (Large Eddy Simulation) results. The kω DES model is a double substitution type, following Davidson and Peng (2003, “Hybrid LES–RANS modelling: a one-equation SGS model combined with a kω model for predicting recirculating flows” Int. J. Numer. Meth. Fluids, 43: 1003–1018). This means that the turbulent length scale is replaced by the grid size in the destruction term of the k-equation and in the eddy viscosity formula. The kω PANS model is derived following Girimaji (2006, “Partially-Averaged Navier–Stokes model for turbulence: a Reynolds-Averaged Navier–Stokes to Direct Numerical Simulation bridging method” J. Appl. Mech., 73: 413–421). The turbulent length scale in the PANS model is constructed from the total turbulent kinetic energy and the sub-filter dissipation rate. Both hybrid models change between RANS (Reynolds-Averaged Navier–Stokes) and LES based on the cube root of the cell volume. The hybrid techniques, in contrast to RANS, are able to reproduce the turbulent flow dynamics in the shear layers of the impacting jet. The change from RANS to LES is much slower however for the PANS model than for the DES model on fine enough grids. This delays the break-up process of the vortices generated in the shear layers with as a consequence that the DES model produces better results than the PANS model.  相似文献   

7.
8.
9.
This paper presents hybrid Reynolds-averaged Navier–Stokes (RANS) and large-eddy-simulation (LES) methods for the separated flows at high angles of attack around a 6:1 prolate spheroid. The RANS/LES hybrid methods studied in this work include the detached eddy simulation (DES) based on Spalart–Allmaras (S–A), Menter’s k–ω shear-stress-transport (SST) and k–ω with weakly nonlinear eddy viscosity formulation (Wilcox–Durbin+, WD+) models and the zonal-RANS/LES methods based on the SST and WD+ models. The switch from RANS near the wall to LES in the core flow region is smooth through the implementation of a flow-dependent blending function for the zonal hybrid method. All the hybrid methods are designed to have a RANS mode for the attached flows and have a LES behavior for the separated flows. The main objective of this paper is to apply the hybrid methods for the high Reynolds number separated flows around prolate spheroid at high-incidences. A fourth-order central scheme with fourth-order artificial viscosity is applied for spatial differencing. The fully implicit lower–upper symmetric-Gauss–Seidel with pseudo time sub-iteration is taken as the temporal differentiation. Comparisons with available measurements are carried out for pressure distribution, skin friction, and profiles of velocity, etc. Reasonable agreement with the experiments, accounting for the effect on grids and fundamental turbulence models, is obtained for the separation flows. The project supported by the National Natural Science Foundation of China (10502030 and 90505005).  相似文献   

10.
The partially integrated transport modelling (PITM) method can be viewed as a continuous approach for hybrid RANS/LES modelling allowing seamless coupling between the RANS and the LES regions. The subgrid turbulence quantities are thus calculated from spectral equations depending on the varying spectral cutoff location [Schiestel, R., Dejoan, A., 2005. Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations. Theoretical and Computational Fluid Dynamics 18, 443–468; Chaouat, B., Schiestel, R., 2005. A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Physics of Fluids, 17 (6)] The PITM method can be applied to almost all statistical models to derive its hybrid LES counterpart. In the present work, the PITM version based on the transport equations for the turbulent Reynolds stresses together with the dissipation transport rate equation is now developed in a general formulation based on a new accurate energy spectrum function E(κ) valid in both large and small eddy ranges that allows to calibrate more precisely the csgs2 function involved in the subgrid dissipation rate sgs transport equation. The model is also proposed here in an extended form which remains valid in low Reynolds number turbulent flows. This is achieved by considering a characteristic turbulence length-scale based on the total turbulent energy and the total dissipation rate taking into account the subgrid and resolved parts of the dissipation rate. These improvements allow to consider a large range of flows including various free flows as well as bounded flows. The present model is first tested on the decay of homogeneous isotropic turbulence by referring to the well known experiment of Comte-Bellot and Corrsin. Then, initial perturbed spectra E(κ) with a peak or a defect of energy are considered for analysing the model capabilities in strong non-equilibrium flow situations. The second test case is the classical fully turbulent channel flow that allows to assess the performance of the model in non-homogeneous flows characterised by important anisotropy effects. Different simulations are performed on coarse and refined meshes for checking the grid independence of solutions as well as the consistency of the subgrid-scale model when the filter width is changed. A special attention is devoted to the sharing out of the energy between the subgrid-scales and the resolved scales. Both the mean velocity and the turbulent stress computations are compared with data from direct numerical simulations.  相似文献   

11.
This paper proposes a combustion model based on a turbulent flame speed closure (TFC) technique for large eddy simulation (LES) of premixed flames. The model was originally developed for the RANS (Reynolds Averaged Navier Stokes equations) approach and was extended here to LES. The turbulent quantities needed for calculation of the turbulent flame speed are obtained at the sub grid level. This model was at first experienced via an test case and then applied to a typical industrial combustor with a swirl stabilized flame. The paper shows that the model is easy to apply and that the results are promising. Even typical frequencies of arising combustion instabilities can be captured. But, the use of compressible LES may also lead to unphysical pressure waves which have their origin in the numerical treatment of the boundary conditions.  相似文献   

12.
本文对在突扩燃烧室内甲烷和空气的预混燃烧进行了大涡模拟(LES)研究,考虑预混燃料的当量比对燃烧室提供的动力及产生的污染物的影响.利用LES计算了不同当量比条件下燃烧室内湍流预混燃烧反应流场的温度、浓度、涡量和压力分布,最后对当量比0.5时B点和C点的温度和速度进行EMD分解,得到了温度场和速度场的各阶模态的平均周期.结果表明:随着当量比从0.5增加至0.7,燃烧反应趋于剧烈,燃烧室的最高温度提高了350K,平均压力从32.876 Pa增大到34.833Pa,燃烧产生的瞬态径向最高浓度从0.5%增加到0.95%.  相似文献   

13.
In this paper, flows past two wing-body junctions, the Rood at zero angle of attack and NASA TN D-712 at 12.5° angle of attack, are investigated with two Reynolds-Averaged Navier-Stokes (RANS) and large eddy simulation (LES) hybrid methods. One is detached eddy simulation (DES) and the other is delayed-DES, both are based on a weakly nonlinear two-equation kω model. While the RANS method can predict the mean flow behaviours reasonably accurately, its performance for the turbulent kinetic energy and shear stress, as compared with available experimental data, is not satisfactory. DES, through introducing a length scale in the dissipation terms of the turbulent kinetic energy equation, delivers flow separation, a vortex or the onset of vortex breakdown too early. DDES, with its delayed effect, shows a great improvement in flow structures and turbulence characteristics, and agrees well with measurements.  相似文献   

14.
Hybrid RANS/LES of flow and heat transfer in round impinging jets   总被引:1,自引:0,他引:1  
Fluid flow and convective heat transfer predictions are presented of round impinging jets for several combinations of nozzle-plate distances H/D = 2, 6 and 13.5 (where D is the nozzle diameter) and Reynolds numbers Re = 5000, 23,000 and 70,000 with the newest version of the k-ω model of Wilcox (2008) and three hybrid RANS/LES models. In the RANS mode of the hybrid RANS/LES models, the k-ω model is recovered. Three formulations are considered to activate the LES mode. The first model is similar to the hybrid models of Davidson and Peng (2003) and Kok et al. (2004). The turbulent length scale is replaced by the grid size in the destruction term of the k-equation and in the definition of the RANS eddy viscosity. As grid size, a maximum measure of the hexahedral grid cell is used. The second model has the same k-equation, but the eddy viscosity is the minimum of the k-ω eddy viscosity and the Smagorinsky eddy viscosity, following a proposal by Batten et al. (2004). The Smagorinsky eddy viscosity is formed with the cube root of the cell volume. The third model has, again, the same k-equation, but has an eddy viscosity which is an intermediate between the eddy viscosities of the first and second models. This is reached by using the cube root of the cell volume in the eddy viscosity formula of the first model.The simulation results are compared with experimental data for the high Reynolds number cases Re = 23,000 and Re = 70,000 and LES data for the low-Reynolds number case Re = 5000. The Reynolds numbers are defined with the nozzle diameter and the bulk velocity at nozzle outlet. At low nozzle-plate distance (the impingement plate is in the core of the jet), turbulent kinetic energy is overpredicted by RANS in the stagnation flow region. This leads to overprediction of the heat transfer rate along the impingement plate in the impact zone. At high nozzle-plate distance (the impingement plate is in the mixed-out region of the jet), the turbulence mixing is underpredicted by RANS in the shear layer of the jet which gives a too high length of the jet core. This also results in overprediction of the heat transfer rate in the impingement zone caused by too big temperature gradients at impingement.All hybrid RANS/LES models are able to correct the heat transfer overprediction of the RANS model. For good predictions at low nozzle-plate distance, it is necessary to sufficiently resolve the formation and development of the near-wall vortices in the jet impingement region. At high nozzle-plate distance, the essence is to capture the evolution and breakup of the flow unsteadiness in the shear layer of the jet, so that accurate mean and fluctuating velocity profiles are obtained in the impingement region. Although the models have a quite different theoretical justification and generate a quite different eddy viscosity in some flow regions, their overall results are very comparable. The reason is that in zones that are crucial for the results, the models behave similarly.  相似文献   

15.
16.
Flow and mixing processes in a classical coaxial jet mixer have been investigated numerically. Calculations have been performed using three Large Eddy Simulation models and three unsteady RANS models. The time averaged mixture fraction and axial velocity, their rms values and energy spectra are compared with LIF and LDA measurements for both j- and r-modes of the jet mixer flow. A special attention is paid to the ability of different models to reproduce unsteady effects. The analysis demonstrates the superiority of the LES method with the dynamic mixed SGS model (DMM) with respect to other RANS and LES models.  相似文献   

17.
A new hybrid RANS/LES approach with scale-adaptive capabilities is developed. The blending function in the SST model is adopted to prevent the invasion of the von Karman length scale to the RANS region, and the compressibility correction proposed by Wilcox is incorporated to produce a realistic shear layer development in compressible flows. The new model is validated for a subcritical flow past a circular cylinder and a supersonic base flow. Time-averaged turbulent statistics predicted by the new model show fairly good agreement with the experimental data, slight improvements over DES simulations, and are much better than SAS results. The main advantage of the new model over the DES method is that the distribution of the blending function reflects local vortex structures instead of grid spacing in the turbulent wake. The sequence of the effect intensity of the compressibility correction from strong to weak is SAS, the new model and DES.  相似文献   

18.
Hybrid or zonal RANS/LES approaches are recognized as the most promising way to accurately simulate complex unsteady flows under current computational limitations. One still open issue concerns the transition from a RANS to a LES or WMLES resolution in the stream-wise direction, when near wall turbulence is involved. Turbulence content has then to be prescribed at the transition to prevent from turbulence decay leading to possible flow relaminarization. The present paper aims to propose an efficient way to generate this switch, within the flow, based on a synthetic turbulence inflow condition, named Synthetic Eddy Method (SEM). As the knowledge of the whole Reynolds stresses is often missing, the scope of this paper is focused on generating the quantities required at the SEM inlet from a RANS calculation, namely the first and second order statistics of the aerodynamic field. Three different methods based on two different approaches are presented and their capability to accurately generate the needed aerodynamic values is investigated. Then, the ability of the combination SEM + Reconstruction method to manufacture well-behaved turbulence is demonstrated through spatially developing flat plate turbulent boundary layers. In the mean time, important intrinsic features of the Synthetic Eddy method are pointed out. The necessity of introducing, within the SEM, accurate data, with regards to the outer part of the boundary layer, is illustrated. Finally, user’s guidelines are given depending on the Reynolds number based on the momentum thickness, since one method is suitable for low Reynolds number while the second is dedicated to high ones with a transition located around Reθ = 3000.  相似文献   

19.
One of the most important and challenging topics in the Large Eddy Simulation of turbulent flows is the connection of the LES technique to the well known and largely used RANS approach where the Navier–Stokes equations are Reynolds averaged. The hybridation of LES and RANS is not only important for its possible practical use, (a rational use of the computational means in different zones), but also from a theoretical point of view, and one possible procedure consists of blending RANS and LES models in the transition zone. In this paper a new filtering technique based on blending filters which transitions smoothly between LES and RANS is proposed and the associated universal model for the subgrid scale stresses is derived. PACS 47.27.Eq  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号