首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用浸渍法制备Ag(x)/ZSM-5(x=3、6、9)催化剂。采用XRD、SEM、NH_3-TPD、Py-FTIR、XPS和NO-TPD等手段对催化剂的理化性质进行表征,在常压固定床微型反应器中评价催化剂甲烷选择性催化还原(CH_4-SCR) NO催化性能,考察Ag负载量对Ag(x)/ZSM-5催化剂CH_4-SCR脱硝性能的影响。结果表明,ZSM-5分子筛负载Ag,催化剂的酸性和酸量发生变化,改善了催化剂对NO的吸附脱附性能。随着Ag负载量增加,形成较大的Ag晶粒,有利于甲烷活化,Ag(x)/ZSM-5催化剂CH_4-SCR脱硝活性提高。Ag(9)/ZSM-5催化剂CH_4-SCR脱硝性能较好,在350℃时NO转化率为41.87%。  相似文献   

2.
As supported palladium oxide catalysts present the best performances in methane combustion in lean conditions, microcalorimetric studies of the interaction between methane and palladium oxide or metallic palladium supported on Al2O3, ZrO2 and BN have been performed at 673 K. At this temperature methane reduced the palladium oxide, and the heat of reduction of palladium oxide was shown to depend on the dispersion and on the support. The lowest heats of reduction corresponded to the highest rates of methane combustion. Moreover methane reforming occurred on metallic palladium, producing hydrogen, and again methane decomposition was shown to depend on the support. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Monometallic and bimetallic catalysts based on palladium and copper deposited on a spinel carrier have been investigated in the catalytic combustion of methane. Great differences were found in catalytic activity, according to the sequence Pd/MgAl2O4>CuO–Pd/MgAl2O4>Pd–CuO/MgAl2O4>CuO/MgAl2O4. They were explained by changes in surface composition of the catalysts. In the case of bimetallic catalysts the metallic surface is preferentially enriched in copper, which acts as a diluting agent for the Pd atom ensembles. As a consequence, the adsorption of reactants is limited and the catalysts so obtained behave like copper slightly doped with palladium.  相似文献   

4.
ZSM-5分子筛是合成三聚甲醛的有效催化剂。本工作通过XRF、XRD、SEM、NH3-TPD、Py-FTIR和27Al MAS NMR等手段对一系列不同SiO2/Al2O3物质的量比的ZSM-5分子筛催化剂进行了表征,研究了ZSM-5分子筛中Brønsted酸中心和Lewis酸中心对其甲醛合成三聚甲醛催化性能的影响。结果表明,SiO2/Al2O3物质的量比为250的ZSM-5分子筛具有合适的Brønsted酸中心用于催化甲醛缩聚为三聚甲醛的反应,同时其Lewis酸中心量极少,可有效抑制Cannizzaro或Tishchenko等副反应,提高三聚甲醛的选择性,因而具有最佳的合成三聚甲醛催化性能。寿命实验评价结果显示,SiO2/Al2O3物质的量比为250的ZSM-5分子筛具有良好的催化稳定性,单程寿命长达114 h,并且可通过550℃焙烧再生恢复其催化活性。  相似文献   

5.
CeO2 was synthesized by sol-gel, hydrothermal, nitrate thermal decomposition methods, respectively, and used as support to prepare CuO/CeO2 catalysts. According to characterization and reaction results, preparation method of CeO2 had a great influence on the physicochemical properties and activities of CuO/CeO2 catalysts. CuO with high dispersion and strong interaction with CeO2 was highly active in methane combustion, while CuO particles less associated with CeO2 showed less activity. The CuO catalyst supported on CeO2 which was prepared via nitrate thermal decomposition method showed the largest area, the smallest particle size, the highest dispersion of copper species and strong support metal interactions. Therefore, it presented the highest redox ability and activity for methane combustion. Activities of the catalysts with different copper content kept increasing until 5% Cu loading and from then on kept constant. Moreover, methane conversion decreased as methane space velocities increased on CuO/CeO2 catalyst. Addition of CO2 to the feed did not produce a significant effect on the catalytic activity, but the presence of H2O provoked a remarkable decrease on the activity of CuO/CeO2 catalyst.  相似文献   

6.
采用氧化还原共沉淀法制备了一系列不同Mn/Ce比的Mn-Ce催化剂,用N_2吸附、XRD、XRF、XPS等手段进行了表征,对其低浓度甲烷催化燃烧活性进行了研究。结果表明,Mn/Ce比对Mn-Ce催化剂的活性有较大的影响;当Mn/Ce比从3∶7增加到9∶1时,其催化活性逐渐增加,甲烷转化率为50%的温度(t_(50))从501℃降低到446℃;而进一步增加Mn含量则会导致其催化活性降低。表征结果显示,Mn-Ce催化剂活性与其比表面积、表面Mn~(4+)浓度、Ce~(3+)含量和晶格氧浓度等密切相关;物相KMn_8O_(16)有利于Mn-Ce催化剂活性的提升。  相似文献   

7.
The aim of this study is to synthesize the catalysts of Fe- and Mn-substituted hexaaluminate by reverse microemulsion medium for methane catalytic combustion application. Pseudo-ternary phase diagrams in quaternary microemulsion systems of cetyltrimethylammonium bromide (CTAB), n-butanol, n-octane, and water [or Al(NO3)3 solution] were presented. The effects of the alcohol chain length, ratio of sur-factant to cosurfactant, and salt concentration on the formation and stability of microemulsion systems were studied. The phase behavior of microemulsion systems was confirmed through the varying of the conductivity with the water content. The performance and structure of the catalysts, La(Mn x /Fe x )Al12−x O19-δ synthesized with the optimal parameter in the phase diagrams of microemulsions systems were characterized by BET, TG-DTA, and XRD. The micro fix-bed reactor was used to measure the catalytic activities of catalysts to methane combustion. The results showed that this synthesis method could yield non-agglomerated and highly dispersed precursors that would undergo crystallization at the lower temperature of 950°C. When temperature was raised up to 1050°C, the complete crystalline La-hexaaluminate was shaped. The hexaaluminate substituted with Fe had high-catalytic activity and stability at high temperature, while the Mn-substituted had higher catalytic activity at lower temperature. When the cooperation of Fe and Mn occurred, i.e., LaFeMnAl10O19−δ exhibited a high surface area and catalytic activity to CH4 combustion, the CH4 light-off temperature was only 475°C and the complete combustion temperature was 660°C. This was attributed to the synergistic effect between Fe and Mn. Supported by the National Natural Science Foundation of China (No. 20706004) and Beijing Natural Science Foundation (Nos. 2062017 and 8072018)  相似文献   

8.
以SiO_2/Al_2O_3物质的量比为50的HZSM-5分子筛为原粉,经过一定浓度的NaOH溶液处理后再使用柠檬酸溶液进行酸洗以制备微孔-介孔多级孔HZSM-5催化剂,并研究其在模拟油中的噻吩烷基化反应性能。结果表明,使用柠檬酸溶液进行酸洗可以清除碱处理后孔道内残余的杂质。当柠檬酸溶液浓度为0.5 mol/L时,此时得到的HZ(AC-0.5)催化剂具有适宜的孔径和酸性,因而噻吩烷基化转化率最高,达到95.6%。在HZ(AC-0.5)催化剂上以苯并噻吩作为噻吩衍生物模型化合物,异戊二烯作为烯烃模型化合物,苯作为芳烃模型化合物,分别考察噻吩烷基化反应性能,并分析不同组分的模拟油对噻吩烷基化反应转化率和选择性的影响。结果表明,噻吩烷基化的最佳反应温度是120℃,在该温度下苯并噻吩烷基化的转化率高于噻吩烷基化的转化率,当异戊二烯作为烯烃模型化合物后噻吩的转化率会升高,当苯作为芳烃模型化合物后噻吩的转化率会降低。  相似文献   

9.
The conversion of methane to liquid fuels is still in the development process. The modified HZSM-5 by loading with Tungsten (W) enhanced its heat resistant performance, and the high reaction temperature (800℃) did not lead to the loss of W component by sublimation. The loading of ZSM-5 with Tungsten and Copper (Cu) resulted in an increment in the methane conversion, CO2, and C5+ selectivities. The high methane conversion and C5+ selectivity, and low H2O selectivity are obtained by using W/3.0Cu/ZSM-5. The optimization of methane conversion over 3.0 W/3.0Cu/ZSM-5 under different temperature and oxygen concentration using response surface methodology (RSM) are studied. The optimum point for methane conversion is 19% when temperature is 753 ℃, and oxygen concentration is 12%. The highest C5+ selectivity is 27% when temperature is 751 ℃. and oxwen concentration is 11%.  相似文献   

10.
柴油机尾气碳颗粒燃烧中La-Mn-Fe-Cu/HZSM-5的催化性能   总被引:2,自引:0,他引:2  
采用柠檬酸络合浸渍法制备分子筛负载钙钛矿型金属复合氧化物催化剂。采用XRD、SEM、XPS和H2-TPR等手段对催化剂性能进行表征,并在微型固定床反应器中对催化剂进行活性评价。结果表明,B位离子由多种金属离子组成的催化剂,可使碳颗粒燃烧温度降低,生成CO2的选择性高。B位离子种类及配比直接影响催化剂性能,Cu离子加入可提高生成CO2的选择性,Co离子加入可降低碳颗粒燃烧温度,调节Fe/Mn离子摩尔比可以改善碳颗粒燃烧温度和生成CO2的选择性。其中,LaMn0.2Fe0.7Cu0.1O3/HZSM-5催化剂性能较好,碳颗粒燃烧温度较低,Tig、Tm和Tf分别为236.6、419.0和458.7 ℃,生成CO2选择性较高,为88.3%。  相似文献   

11.
MFI分子筛限域空间内Pd催化剂上甲烷燃烧   总被引:1,自引:0,他引:1  
甲烷是一种重要的温室气体,其开发利用过程中不完全燃烧所残留的气体排放到大气中会造成严重的环境问题,因此提高甲烷燃烧效率显得尤为重要.与传统燃烧方式相比,催化燃烧在低温区表现出高的燃烧效率,成为甲烷燃烧理想的选择.在实际应用时,甲烷燃烧催化剂应在低温区具备高的催化活性,同时在过量水蒸气存在下具备好的稳定性.负载型Pd基催化剂是当前研究最多的甲烷燃烧催化剂,Pd粒子尺寸、载体类型、酸性位点以及金属与载体的相互作用是影响甲烷燃烧活性与稳定性的关键因素.本文设计了原位水热合成路线将孤立的Pd离子稳定封装于MFI分子筛孔道内(Pd@MFI),以期获得高活性、高稳定性的甲烷燃烧催化剂,并揭示其反应机理与构效关系.通过X射线粉末衍射、高分辨透射电子显微镜以及球差校正扫描透射电子显微镜分析了Pd@MFI催化剂的基本结构,并直接观测了Pd物种在分子筛晶体中的分布;进而利用氨气程序升温脱附、固体核磁共振、氢气程序升温还原、X射线光电子能谱(XPS)和CO吸附红外光谱等表征技术研究了催化剂的酸性以及Pd在分子筛中的存在状态.表征结果证实,通过原位水热合成方法可将Pd物种以pd2+和Pd(OH)+的形式封装在MFI分子筛孔道内,孤立的Pd离子与分子筛骨架之间存在着强相互作用,有效稳定Pd离子并实现贵金属Pd的最大化利用.在甲烷燃烧反应中,Pd@H-ZSM-5在高空速下表现出较好的催化活性与较低的表观活化能(70.7 kJ/mol).热稳定性及耐水性测试结果表明,Pd@H-ZSM-5在400℃下连续反应100 h后甲烷燃烧活性无明显下降,且反应后Pd物种在分子筛孔道内仍保持高度分散,说明该催化剂在甲烷燃烧过程中具备优异的稳定性和抗烧结性能.通过反应动力学、程序升温脱附以及原位红外光谱等技术手段研究了甲烷催化氧化机理,结果表明,Brφnsted酸性位点的存在有利于甲烷吸附并促进其在相邻Pd位点上活化,在MFI分子筛限域空间内形成Pd位点和Brφnsted酸性位点的有效协同.原位近常压XPS分析结果表明,Pd@H-ZSM-5催化的甲烷燃烧过程中存在着pd2+-pdn+-pd2+的可逆氧化还原循环.综合分析上述结果,最终可阐明Pd@H-ZSM-5模型催化剂上甲烷燃烧的反应机理.  相似文献   

12.
Galvanic deposition method was used to prepare the Pd/Ni-Al2O3-GD catalyst for the combustion of methane under lean conditions. The new catalyst and compared catalysts (Pd/Al2O3-IW, Pd-Ni/Al2O3-IW, Pd/Ni-Al2O3-IW) prepared by incipient wetness impregnation were characterized by N2-physisorption, XRD and TEM to clarify particle size and size distribution of palladium species. Combined O2-TPD and XPS results with the catalytic data, it shows that the surface palladium species with low valence exhibits better combustion performance due to their stronger interaction with support. The results indicate that the galvanic deposition method is an effective route to prepare efficient catalyst for methane combustion, and it also provides useful information for improving the present commercial catalyst.  相似文献   

13.
Supported manganese oxide catalysts were prepared by incipient wetness impregnation method for methane catalytic combustion, and effects of the support (Al2O3, SiO2 and TiO2) and Mn loading were investigated. These catalysts were characterized with N2 adsorption, X-ray diffraction, X-ray photoelectron spectroscopy and temperature-programmed reduction techniques. Methane conversion varied in a large range depending on supports or Mn loading. Al2O3 supported 15% Mn catalyst exhibited better activity toward methane catalytic oxidation. The manganese state and oxygen species played an important role in the catalytic performance,  相似文献   

14.
Summary With ZSM-5 and silicalite (both initial and BaO modified) the yield of styrene, the most desirable reaction product, was highly represented when BaO modified silicalite was used as catalyst for the reaction. The catalytic results fitted the basicity, surface area and structural crystallinity.  相似文献   

15.
采用反相微乳液-共沉淀法制备了镧系六铝酸盐催化剂。体系中TX-100 作为表面活性剂,正己醇作为助表面活性剂,环己烷作为油相。分别用Fe、Co、Ni、Cu、Mg离子作为活性组分进行掺杂。通过X射线衍射、比表面积分析和扫描电镜等实验技术及甲烷燃烧对催化剂的结构和性质进行考察。结果表明,Fe离子和Mn离子共同掺杂所制备的催化剂LaMnFeAl10O19-δ具有较高的催化活性,起燃温度T10%为477℃,至674℃ 90%甲烷转化。  相似文献   

16.
<正>The catalytic activity of Fe/ZSM-5 for the selective reduction of NO to N_2 with methane in the presence of excess O_2 was studied.Fe/ZSM-5 catalysts with various Fe loadings were prepared by impregnation method.It is well known that methane is inactive when Fe/ZSM-5 as the catalyst for the selective catalytic reduction(SCR) of NO with methane.However,this paper shows that when the content of Fe was about 0.5%,Fe/ZSM-5 showed higher catalytic activity and selectivity of methane,and put forward measurable activation for CH_4 is an important factor for the reaction of removal of NOx with CH_4.  相似文献   

17.
《Mendeleev Communications》2021,31(5):712-714
Gas-phase oxidative carbonylation of methane was first performed on ZSM-5 zeolites. The addition of water vapor to a mixture of carbonylation gases leads to a multiple (by two orders of magnitude) increase in acetic acid yield. Zeolites with high acidity, primarily Brønsted acidity, favor the target product formation.  相似文献   

18.
The objective of this work was to study the kinetics of methane combustion for a series of Fe2O3/TiO2 catalysts. An increase in activity is observed as iron loading increases, and can be attributed to an increase of surface coverage by Fe2O3 species. Kinetic studies revealed that the reaction orders with respect to methane, oxygen, carbon dioxide and water are 1, 0, 0 and -1 respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The catalysts of hexaaluminate (BaMnxAl12-xO19-δ , x = 1.0, 2.0, 3.0, 4.0) to be used in methane combustion have been successfully synthesized by co-precipitation method and supercritical drying. The crystalline structure and surface area of catalyst were characterized by X-ray diffraction (XRD) and nitrogen adsorption analysis of BET method. BET analysis revealed that the preparing and drying method proposed here provides stable materials with higher surface area of 51.4 m2/g in comparison to materials prepared using conventional ambient drying method for BaMnxAl12?xO19-δ calcined at 1200℃ under oxygen. XRD analysis indicated that formation of a pure single phase BaMnxAl12-xO19-δ occurred up to x = 3 in the case of Mn-substituted barium hexaaluminates. Incorporation of Mn in excess leads to BaAl2O4 phase formation. As far as the valence state of Manganese ions was concerned, the introduced Mn ions were either divalent or trivalent. The first Mn ions were introduced in the matrix essentially as Mn2 and only for BaMn3Al9O19-δ does manganese exist exclusively as Mn3 ; the higher the Mn concen- tration, the higher the proportion of Mn3 . Catalytic activity for methane combustion has been measured for Mn-substituted barium hexaaluminates, light-off temperature was observed in the 512-624℃ range. The highest activity was obtained for catalysts containing 3 Mn ions per unit cell, which reveals that the BaMnxAl12-xO19-δ catalyst was a promising methane combustion catalyst with high activity and good thermal stability. Temperature programmed reduction (TPR) under hydrogen has been used to correlate the catalytic activity with the amount of easily reducible species.  相似文献   

20.
采用固定床微分反应器,在常压、450~500℃、甲烷体积分数10%~35%条件下,进行铜基催化剂上甲烷催化燃烧动力学特性研究。研究表明,甲烷分压对反应速率影响显著,而氧气分压的影响可以忽略。采用最小二乘法进行动力学模型参数估计,建立的反应动力学模型为-rCH4=1.61×107×e-108 000/RT×pCH40.5。检验结果表明,所建模型与实验数据良好相容,是适宜和可信的。根据实验结果推断甲烷催化燃烧分两步进行,首先氧气快速与铜基催化剂上活性空位点反应,形成吸附氧气分子;随后吸附氧气分子和甲烷分子反应,生成二氧化碳和水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号