首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 60 毫秒
1.
以电石和氯仿为碳源和反应物,二茂铁为催化剂,置于100 ml的不锈钢高压釜中在350℃进行化学反应并保温3 h,制备了50~150 nm的无定形结构毛绒形貌碳球.采用X射线显微镜、扫描电子显微镜、透射电子显微镜和激光拉曼光谱仪等手段分析碳球的物相、形貌和结构,并初步讨论了纳米碳球的生长机理.  相似文献   

2.
以电石和氯仿为碳源和反应物,以二茂铁为催化剂,研究不同压力对CaC2-CHCl3体系制备碳球的形貌和结构的影响。反应设备是100mL的不锈钢高压釜,充入的氩气压力为0.5~1.5MPa,在350℃进行化学反应并保温3h,制备不同类型的碳球。采用X线衍射仪、扫描电子显微镜、透射电子显微镜和激光拉曼光谱仪等手段分析碳球的物相、形貌和结构。探讨空心碳结构的CHCl3雾化小液滴生长机理。研究结果表明:CaC2-CHCl3体系制备的碳球主要由无定形炭组成,随着压力增加,结晶程度增大。空心碳球的形成与体系压力相关,当充入压力为0.5MPa时,合成直径为100~260nm的实心无定形碳球,具有向菜花结构转变的趋势;当充入的氩气压力为1.0MPa时,合成4种不同空心碳结构,即空心毛绒碳球、角状空心碳棒、空心光滑碳球或碳棒和多边形化的空心碳球;当充入的氩气压力为1.5MPa时,合成3种不同直径范围的碳球,相同直径的碳球团聚在一起。  相似文献   

3.
为改善石墨作为电极材料的性能,以葡萄糖和球形天然石墨为原料,采用水热法合成了碳纳米球修饰天然石墨材料CNS@NG。应用X射线衍射、扫描电子显微镜和拉曼光谱对样品的微观结构、形貌和组成进行表征。结果表明,由葡萄糖水热及碳化处理后形成的碳纳米球均匀地分布在球形天然石墨表面,所制备的合成材料样品较好地保持了天然石墨的晶体结构,表现出碳与石墨复合材料的拉曼特征,具有较好的稳定性。  相似文献   

4.
采用喷雾催化热解法制备出负载纳米铁颗粒的碳纳米球,研究了氢气流量对其微观结构、晶体结构和磁性能的影响。当氢气流量为3.0L/min时,所制备的碳纳米球具有洋葱状结构,外表面不光滑,其石墨层间距为0.342nm,球体中散布着直径为几个纳米到30nm的纳米铁颗粒;当氢气流量提高到5.4L/min后,所制备的碳纳米球具有光滑的表面,其石墨层间距增大到0.360nm;随着氢气流量的增大,碳纳米球的矫顽力逐渐增大,饱和磁场强度和剩余磁场强度则逐渐降低。  相似文献   

5.
6.
以聚吡咯(PPy)纳米球为前驱体,经1 000℃高温炭化后,采用KOH在750℃进行活化制备多孔碳纳米球(PCS),并利用对巯基苯胺(PATP)与PCS进行溶剂热反应对PCS进行功能化处理,制备了高密度的功能化多孔碳纳米球(PATP-PCS).结果表明,经过PATP功能化之后,低密度的多孔炭材料转变为高密度的功能化炭材料.PATP-PCS的体积电容在0.5 A/g时可达183.63F/cm~3;当电流密度增大到20 A/g时,体积电容仍有123.14F/cm~3,显示出优异的倍率性能;在电流密度为10A/g的条件下,经过3 000次恒流充放电循环后,其循环寿命高达94.7%,表明了突出的循环稳定性.  相似文献   

7.
8.
利用多种长链脂肪烃混合物在大气环境中的不完全燃烧,通过沉积并收集其燃烧产物,制备了性能稳定、尺度均一的碳纳米微球.该方法适用性广、操作简便、成本低廉,无需复杂仪器和特定试剂.采用场发射扫描电镜和透射电镜研究了所制备的碳纳米微球的微观结构,结果表明该类纳米微球均具有50 nm左右的直径.  相似文献   

9.
催化法制备纳米碳材料和纳米镁材料   总被引:1,自引:0,他引:1  
《自然科学进展》1999,9(11):1050-1054
使用催化法可以在(比较)和温和的条件下制备纳米碳材料和性能更加优异的纳米镁材料。使用Ni催化剂,CH4/H2=9:1,在600℃制得外径为42 ̄12nm,内径为10 ̄3nm,长度为微米级的碳纳米管;在500℃制得外径为80 ̄40nm、长度有数十微米的纳米级碳纤维;在CH4气氛、600℃制得纳米级碳颗粒,其平均颗粒直径为80nm,以TiCl4为催化剂母体,在常压、60℃条件下制得纳米级氢化镁,其平均  相似文献   

10.
化学气相沉积法合成ZnS纳米球   总被引:5,自引:0,他引:5  
以碳纳米管层作为空间限制反应的模板,采用化学气相沉积法(CVD)生长ZnS纳米球。透射电子显微镜(TEM)和X射线衍射(XRD)实验结果显示出其生成物为β-ZnS纳米球,直径为70nm左右,具有颗粒均为、纯度高、产率大、成本低、适于批量化生产等特点。  相似文献   

11.
以多巴胺为前体,利用高温碳化的方法制备多孔碳纳米微球.多孔碳纳米微球通过透射电子显微镜和X射线粉末衍射图谱来进行表征.利用多孔碳纳米微球修饰玻碳电极,构建电化学传感器用于4-氨基苯酚的检测.结果表明,该传感器实现了对4-氨基苯酚的灵敏检测,线性检测范围为0.1~120μmol/L,检出限为20nmol/L.此外,该方法具有稳定性好、选择性高等优点.  相似文献   

12.
聚丙烯腈(PAN)基炭纳米微球是一种功能炭材料,在诸多领域有着广泛的应用前景。不同粒径PAN基炭纳米微球具有不同的结构与性能,其中合成不同粒径PAN纳米微球是制备炭纳米微球的瓶颈。通过权衡比较各种聚合物微球的合成方法和反应介质,认为以丙烯腈(AN)为原料,采用无皂乳液聚合法,在乙醇-水反应介质中可以合成不同粒径的PAN纳米微球。对合成的PAN纳米微球进行氧化和炭化,即可获得不同粒径的PAN基炭纳米微球。  相似文献   

13.
以Fe3O4纳米粒子为催化剂,CH4,B2H6和H2为气源,采用电子回旋共振微波等离子体化学气相沉积技术(ECR CVD)在多孔硅基底上制备出了掺硼碳纳米管薄膜·使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能量色散X射线谱(EDX)和X射线光电子谱(XPS)对样品的形貌、结构及组分进行表征·结果表明:通入B2H6后,纳米管的形貌和结构均发生了变化·生长气氛中硼的存在使得高取向性密集碳纳米管转变为较为分散且取向性很差的纳米管·从中空结构转变为类竹节结构,同时多壁管外径增大,管壁增厚,表面变得粗糙,并导致纳米管的生长速度降低,长度减小·  相似文献   

14.
借助偏光显微镜、扫描电镜和透射电镜对中间相沥青焦的微观结构进行了研究。结果表明:中间相沥青在常压下炭化后,其偏光组织结构以小域组织为主,高压下炭化后以流线型组织为主。在SEM和低倍TEM下,中间相沥青焦为层片状结构,随炭化压力的增加,焦炭中的孔隙由大小不均的大孔变为孔径较均一的小孔。在HRTEM下,中间相沥青焦的微晶很大,内部的晶格条纹排列很规整,是一种长程有序的晶体结构。  相似文献   

15.
微结构对纳米碳纤维氧阴极还原性能影响   总被引:1,自引:0,他引:1  
在制备微结构可控纳米碳纤维基础上,研究纳米碳纤维微结构对氧气电催化还原反应(oxygen reduction reaction,ORR)性能的影响.利用化学还原法合成了Pt电催化剂,研究了纳米碳纤维微结构对Pt/CNFs电催化剂电催化性能的影响.研究发现,相对于基于活性炭的电催化剂,载于纳米碳纤维的电催化剂具有较高的ORR活性;同时,基于板式纳米碳纤维的电催化剂表现出最高的ORR活性.  相似文献   

16.
碳含量对纳米硬质合金组织和性能的影响   总被引:11,自引:0,他引:11  
该文研究碳含量对纳米硬质合金组织和性能的影响 .通过对添加不同碳含量合金的组织观察和机械性能比较 ,发现碳对硬质合金的 WC晶粒度、相组织和机械性能都有着极其重要的影响 .研究结果表明 ,通过控制碳的含量可以控制 WC晶粒在烧结过程中的长大 .  相似文献   

17.
为研究SWRS82B钢不同条件下进行的大过冷工艺所形成的渗碳体形态对珠光体亚结构组织及性能的影响,制定相关热处理工艺:将试样在880℃奥氏体化15 min后,以70,100,200℃/s的冷速过冷到300℃等温3~15s,之后升温至珠光体区等温1min,最后快冷至室温.通过SEM和TEM观察,以及MTS拉伸试验机得到的数据,结果表明,在过冷时间为3s的前提下,随着冷速的增长,渗碳体由完整片层状发生不同程度的碎化.在200℃/s时,渗碳体已经大面积碎化,并发现大量的纳米级渗碳体,抗拉强度表现为先降低后升高,伸长率持续升高.当冷却速度为70℃/s时,随着过冷时间的延长,抗拉强度和伸长率都表现为先降低后增大的特点.纳米渗碳体随着过冷时间的延长开始减少,到达15s时,开始出现了贝氏体组织.  相似文献   

18.
针对钢丝镀锌后扭转值波动很大的实际问题,本文系统表征分析了钢丝拉拔—热镀锌—扭转生产过程中的微观组织演化.研究结果表明:钢丝的微观组织在生产过程中会发生较大的变化.拉拔和扭转过程中索氏体片会发生扭曲变形使得片层间距减小,渗碳体片发生破碎,小尺寸的渗碳体颗粒发生溶解,钢丝中的位错密度会显著增加;而热镀锌过程使得小尺寸的渗碳体颗粒发生溶解,同时能消除钢丝内部的应力,使得位错密度降低.渗碳体片破碎、渗碳体颗粒溶解、索氏体片层间距、位错密度等因素综合作用,导致了钢丝扭转过程中的性能差异.  相似文献   

19.
利用超快速冷却装置,通过控制轧后冷却路径,对某中碳钢的显微组织和力学性能进行了系统的研究.结果表明:超快速冷却可以抑制先共析铁索体的生成,破坏原有先共析铁素体的网状分布;超快速冷却显著缩小了珠光体的片层间距;随着超快速冷却后温度的降低,实验钢的强度和室温冲击韧性同时得到了提高.高温终轧+超快速冷却工艺可以使中碳钢获得良...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号