首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Poly(N-isopropylacrylamide) (PNIPAAm) hydrogel exhibits a response to external temperature variation and shrinks in volume abruptly as the temperature is increased above its lower critical solution temperature. It has great potential applications in biomedical fields. A rapid response rate is essential, especially when this material is designed as an on-off switch for targeted drug delivery. However, due to the appearance of a thick, dense skin layer on the hydrogel surface during the shrinking process, the deswelling rate of conventional PNIPAAm gels is low. In this article, a novel method is proposed to modify the surface morphology of PNIPAAm gel, in which the swollen gels are frozen at low temperature (-20 degrees C). The scanning electron micrographs revealed that a fishnet-like skin layer appeared on the surfaces of the cold-treated gels. Dramatically rapid deswelling was achieved with the cold-treated gels since the fishnet-like structure with numerous small pores prevented the formation of a dense, thick skin layer during the deswelling process, which commonly occurs in normal PNIPAAm hydrogels. Prolonging the cold treatment from 1 day to 10 days resulted in a slightly higher deswelling rate. Rearrangement of the hydrogel matrix structure during the freezing process might contribute to the formation of the fishnet-like skin layer. The water uptake of the hydrogels increased nearly in proportion to the square root of time, indicating that the reswelling rate of hydrogels was controlled predominantly by water diffusion into the network. However, there were no significant differences in the equilibrated swelling ratio and reswelling kinetics at room temperature (22 degrees C) between normal gels and cold-treated gels, which implied that cold treatment did not change bulk porosity and gel tortuosity much.  相似文献   

2.
Thermoresponsive polymer gels exhibit pronounced swelling and deswelling upon changes in temperature, rendering them attractive for various applications. This transition has been studied extensively, but only little is known about how it is affected by nano‐ and micrometer‐scale inhomogeneities in the polymer gel network. In this work, droplet microfluidics is used to fabricate microgel particles of strongly varying inner homogeneity to study their volume phase behavior. These particles exhibit very similar equilibrium swelling and deswelling independent of their inner inhomogeneity, but the kinetics of their volume phase transition is markedly different: while gels with pronounced micrometer‐scale inhomogeneity show fast and affine deswelling, homogeneous gels shrink slowly and in multiple steps.  相似文献   

3.
Monodispersed poly(N‐isopropylacrylamide) (PNIPAM) nanoparticles, with hydrodynamic radius less than 50 nm at room temperature, have been synthesized in the presence of a large amount of emulsifiers. These microgel particles undergo a swollen–collapsed volume transition in an aqueous solution when the temperature is raised to around 34 °C. The volume transition and structure changes of the microgel particles as a function of temperature are probed using laser light scattering and small angle neutron scattering (SANS) with the objective of determining the small particle internal structure and particle–particle interactions. Apart from random fluctuations in the crosslinker density below the transition temperature, we find that, within the resolution of the experiments, these particles have a uniform radial crosslinker density on either side of the transition temperature. This result is in contrast to previous reports on the heterogeneous structures of larger PNIPAM microgel particles, but in good agreement with recent reports based on computer simulations of smaller microgels. The particle interactions change across the transition temperature. At temperatures below the transition, the interactions are described by a repulsive interaction far larger than that expected for a hard sphere contact potential. Above the volume transition temperature, the potential is best described by a small, attractive interaction. Comparison of the osmotic second virial coefficient from static laser light scattering at low concentrations with similar values determined from SANS at 250‐time greater concentration suggests a strong concentration dependence of the interaction potential. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 849–860, 2005  相似文献   

4.
Four types of temperature-sensitive hairy particles were prepared by living radical graft polymerization using a photoiniferter. The hairs were poly(N-isopropylacrylamide) (N), poly(N-isopropylacrylamide)ran-poly(acrylic acid) (NA), and diblock copolymers composed of N and NA. The block copolymer was attached to the particle in different modes, that is, one has a N-block inner and a NA-block outer but the other has the inverse arrangement. The acrylic acid content in NA was adjusted to be only 1%, but NA had a higher transition temperature by 5 degrees C than N in a neutral aqueous solution. The sequence of blocks attached onto the particle was the key factor to control the temperature responsiveness of the particle. The hairy particles exhibited a two-step transition with increasing temperature under certain conditions. The hairy particle also responded to the pH and ionic strength. Some unique behaviors of the hairy particles were studied in detail in terms of electrophoretic mobility and adsorption of dye molecules as well as swelling/deswelling.  相似文献   

5.
The volume phase transition (VPT) behavior of individual thermally responsive poly(N-isopropylacrylamide-co-acrylic acid) (pNIPAm-co-AAc) hydrogel microparticles was studied by in-situ dynamic mode atomic force microscopy (AFM) and force spectroscopy during heating and cooling cycles. Hydrogel samples were prepared by electrostatic immobilization of microparticles to amine-modified gold surfaces. The AFM studies of particle deswelling were performed by varying the force applied on the particles during imaging as a function of the geometry and material of the AFM probe. Aluminum-coated silicon cantilevers were found to influence substantially the behavior of the particles during the VPT, leading to a significant shape change. Low force impact magnetic excitation of the AFM probe (MAC mode) during dynamic mode measurements resulted in an undisturbed deswelling behavior enabling observation of the expected volume changes of the particles without significant tip-sample interaction. Hence, MAC-mode AFM was determined to be the most suitable technique for in-situ AFM studies on volume and shape changes at single hydrogel particles during VPT. Elasticity measurements performed at single particles at temperatures below and above the VPT revealed a 15-fold increase in the Young's modulus after passing the VPT, indicating the transition from a soft, swollen network to a stiffer, deswollen state.  相似文献   

6.
Nanogel nanosecond photonic crystal optical switching   总被引:3,自引:0,他引:3  
We developed a robust nanosecond photonic crystal switching material by using poly(N-isopropylacrylamide) (PNIPAM) nanogel colloidal particles that self-assemble into crystalline colloidal arrays (CCAs). The CCA was polymerized into a loose-knit hydrogel which permits the individual embedded nanogel PNIPAM particles to coherently and synchronously undergo their thermally induced volume phase transitions. A laser T-jump from 30 to 35 degrees C actuates the nanogel particle shrinkage; the resulting increased diffraction decreases light transmission within 900 ns. Additional transmission decreases occur with characteristic times of 19 and 130 ns. Individual NIPAM sphere volume switching occurs in the approximately 100 ns time regime. These nanogel nanosecond phenomena may be useful in the design of fast photonic crystal switches and optical limiting materials. Smaller nanogels will show even faster volume phase transitions.  相似文献   

7.
This article proposes a temperature-jump (T-jump) approach for characterizing the kinetics of volume recovery in glassy materials. The kinetic characterization is based on the Kovacs-Aklonis model. This incorporates a retardation-time spectrum which shifts according to both the temperature and the instantaneous volume. The proposed experiments involve measuring the change in recovery rate caused by an abrupt temperature jump. Although an analogous procedure has been used to determine the activation energy for linear viscoelastic creep, the analysis for volume recovery is complicated by its inherent nonlinearity. Nevertheless, accounting for the nonlinearity by a reduction of the time scale permits the T-jump results to be analyzed. In particular, the T-jump approach can be used to: (i) test a particular functional form for the shift factor and (ii) determine the previously unmeasurable parameter x, which defines the relative importance of the temperature dependence and the volume dependence in this function. In addition, numerical simulations indicate that the proposed method can be implemented in the laboratory.  相似文献   

8.
The kinetics of deswelling of sodium polyacrylate microgels (radius 30-140 microm) in aqueous solutions of dodecyltrimethylammonium bromide is investigated by means of micropipet-assisted light microscopy. The purpose of the study is to test a recent model (J. Phys. Chem. B 2003, 107, 9203) proposing that the rate of the volume change is controlled by the transport of surfactant from the solution to the gel core (ion exchange) via the surfactant-rich surface phase appearing in the gel during the volume transition. Equilibrium swelling characteristics of the gel network in surfactant-free solutions and with various amounts of surfactant present are presented and discussed with reference to related systems. A relationship between gel volume and degree of surfactant binding is determined and used in theoretical predictions of the deswelling kinetics. Experimental data for single gel beads observed during deswelling under conditions of forced convection are presented and compared with model calculations. It is demonstrated that the dependences of the kinetics on initial gel size, the surfactant concentration in the solution, and the liquid flow rate are well accounted for by the model. It is concluded that the deswelling rates of the studied gels are strongly influenced by the mass transport of surfactant between gel and solution (stagnant layer diffusion), but only to a minor extent by the transport through the surface phase. The results indicate that, during the volume transition, swelling equilibrium (network relaxation/transport of water) is established on a relatively short time scale and, therefore, can be treated as independent of the ion-exchange kinetics. Theoretical aspects of the kinetics and mechanisms of surfactant transport through the surface phase are discussed.  相似文献   

9.
Time-resolved fluorescence and transient absorption results have been obtained for small (approximately 3 nm) and large (approximately 5-8 nm) InSe nanoparticles in room-temperature solutions. The large particles are nonfluorescent, indicating that the conduction band is at M and the optical transition is forbidden. For some fraction of the small particles, the bottom of the conduction band is at Gamma and the optical transition is allowed. The small particle fluorescence measurements indicate that hole trapping occurs on the 200-300 ps time scale. The transient absorption spectra are featureless throughout the visible with a broad maximum at 600-650 nm. The transient absorption kinetics of both small and large particles show a 200-300 ps decay component that is assigned to hole trapping. These kinetics also show a 15 ps decay that has a larger amplitude in the case of the large particles and is assigned to an electron Gamma to M relaxation. The amplitude of this decay indicates that the initial electron and hole intraband transitions result in roughly comparable intensities of the initial transient absorption.  相似文献   

10.
We studied conformational stability and folding kinetics of a three-stranded beta-sheet containing two rigid turns. Static infrared measurements indicate that this beta-sheet undergoes a broad but cooperative thermal unfolding transition with a midpoint at approximately 53 degrees C. Interestingly, time-resolved infrared experiments show that its relaxation kinetics in response to a temperature-jump (T-jump) occur on the nanosecond time scale (e.g., the relaxation time is approximately 140 ns at 35.0 degrees C), thereby suggesting that the conformational relaxation encounters only a small free energy barrier or even proceeds in a downhill manner. Further Langevin dynamics simulations suggest that the observed T-jump relaxation kinetics could be modeled by a conformational diffusion process along a single-well free energy profile, which allowed us to determine the effective diffusion constant and also the roughness of the folding energy landscape.  相似文献   

11.
Poly(N-isopropylacrylamide) and poly(vinyl methyl ether) are well-known thermoresponsive polymers. The aqueous solutions of these polymers exhibit a phase transition followed by phase separation with LCST approximately 305-310 K. In the present study, the dynamic behavior of the phase separation was analyzed by a laser T-jump method. Two different T-jump methodologies were employed: the first was a dye-photosensitized T-jump technique (indirect heating) using 532 nm laser pulses, while the other was a direct heating T-jump technique using 1.2 mum laser pulses. Both methods gave similar results. The time constants (tau) of the phase separation were systematically determined for 1-10 wt % aqueous solutions of the polymers, and a hydrodynamic radius (R) dependence for tau was clearly observed. The values of tau increased linearly with increasing square of R. The present behavior is interpretable in the framework of Tanaka's model for the volume phase transition of a gel, since each of the polymer chains are entangled in the present sample solutions, which can be regarded as approximating to a gel in solution.  相似文献   

12.
Fluorescently labeled core-shell latex particles composed mainly of the thermoresponsive polymer poly-N-isopropylacrylamide (p-NIPAm) have been synthesized such that an energy transfer donor (phenanthrene) and an energy transfer acceptor (anthracene) are covalently localized in the core and shell, respectively. When the thermally induced particle deswelling is interrogated by photon correlation spectroscopy (PCS), a continuous (non-first order) phase transition is observed. Conversely, when the nonradiative energy transfer (NRET) efficiency is used to probe the collapse of these same particles, the phase transition event is observed to occur over a much smaller temperature range and approaches first-order (discontinuous) behavior. Furthermore, core-shell particles with differing shell thicknesses display identical phase transition temperatures when PCS is used to monitor the transition, while NRET measurements show a clear increase in collapse temperature as the shell thickness is increased. These apparently contradictory results are discussed in terms of a radial phase coexistence that exists in the microgel particles, which arises from a similarly radial inhomogeneity in the cross-linker concentration. The prospects for the NRET technique as a molecular-scale probe of nanostructured microgels are also discussed.  相似文献   

13.
由于改变亲水/疏水单体比值、与离子单体共聚心、改变凝胶内部结构等均可不同程度地调整温敏水凝胶的溶胀性能,本研究选择一种既含疏水烷基又含季铵盐正离子型亲水基团的两亲性单体——甲基丙烯酰氧乙基二甲基辛基溴化铵(ADMOAB),结构如示意图1所示.与N-异丙基丙烯酰胺(NIPAM)聚合,制备了P(NIPAM-co-ADMOAB)共聚水凝胶,以便在引入离子型结构单元的同时,改变凝胶体系中亲水/疏水单体比值,避免单纯增加疏水单体引起的水凝胶溶胀性降低问题,并考察了ADMOAB对水凝胶溶胀性能的影响,对该类水凝胶迄今鲜见相关文献报道.该研究对进一步了解水凝胶的构效关系、探索有效控制溶胀性能的途径具有积极意义.  相似文献   

14.
We study the electrophoresis of surface-charged thermosensitive microgel particles based on poly-N-isopropylacrylamide (PNIPAM); these deswell with increasing temperature T. Our results show that the electrophoretic mobility mu is affected by the temperature-induced volume phase transition. It increases with increasing temperature, as a result of the charge density increase induced by particle deswelling. Temperature thus allows control of mu, in contrast to the more conventional charged hard spheres for which mu is T independent. Salt also affects the mu behavior and gives rise to rich phenomenology, sharing common characteristics with charged hard spheres and polyelectrolyte-coated colloids depending on whether the microgels are swollen or deswollen. We interpret the effects of salt concentration n by considering that particle charges are located in an external shell, as confirmed by titrations, and that it is this shell-salt-induced compression that affects the resulting mu behavior.  相似文献   

15.
Near-monodisperse, sterically stabilized poly(2-vinylpyridine) (P2VP) microgels were synthesized by emulsion polymerization. These particles exhibited completely reversible pH-responsive swelling/deswelling behavior in aqueous solution. Stopped-flow light scattering was employed to investigate the kinetics of pH-induced deswelling in highly dilute dispersions. Upon a pH jump from 2 to various final solution pH values (>or=5.4), the scattered light intensity of an aqueous dispersion of a 1,960 nm microgel exhibited an abrupt initial increase, followed by a gradual decrease to the final equilibrium value. The whole microgel-to-latex deswelling process occurred over time scales of approximately 0.5-1.0 s, which is much slower than the kinetics for latex-to-microgel swelling. The microgel deswelling kinetics depends on the final pH, with a higher final pH leading to a faster rate of shrinkage. Close inspection of the deswelling kinetics during the early stages (<0.2 s) revealed that initial microgel collapse occurred within approximately 50 ms, with more rapid transitions being observed when higher final pH values were targeted. Addition of external salt significantly accelerates the kinetics of deswelling. Systematic studies of the microgel-to-latex transition for a series of six near-monodisperse P2VP particles (with swollen microgel diameters ranging from 1270 to 4230 nm) has also been investigated. The characteristic deswelling time for initial microgel collapse, tau deswell, correlated fairly well with the initial swollen microgel radius, R, in agreement with the Tanaka equation. Moreover, the collective diffusion coefficient of the gel network, D, calculated from the slope of the tau deswell- R (2) curve, was of the order of 10 (-7) cm (2) s (-1).  相似文献   

16.
The interaction between poly-L-lysine (pLys) and oppositely charged poly(acrylic acid) (pAA) microgels (? approximately 80-120 microm) was studied by micromanipulator-assisted light microscopy and confocal laser scanning microscopy. The aim of this study was to investigate effects of peptide size, pH, and salt concentration on binding, transport, and distribution of pLys in pAA microgel particles and thereby also to outline the details of the gel deswelling in response to pLys binding and incorporation. Both peptide distribution and gel deswelling kinetics were found to be strongly influenced by the pLys molecular weight, originating partly from limited entry of large peptides into the gel particle core. Also pH was shown to influence both deswelling and pLys incorporation kinetics, with a decreased deswelling rate observed with increasing pH. These effects are determined by a complex interplay between the pH-dependence of both pLys and the gel network, also influencing volume transitions of the latter. Finally, salt concentration was shown to have a significant effect on both gel deswelling rate and pLys transport, with an increased electrolyte concentration resulting in decreased deswelling rate but also in an increased peptide transport rate within the microgel particles.  相似文献   

17.
An analytical theory has been formulated for the stage of nonisothermal nucleation of supercritical particles in a metastable medium with instantaneously generated initial supersaturation. The theory takes into account the nonuniformities of metastable substance concentration and temperature, which result from the nonstationary diffusion of the substance to growing particles and the nonstationary transfer of the heat of the phase transition from the particles to the medium. The formulated theory extends the approach based on the concept of excluded volume that has recently been used in the theory of the stage of nucleation under isothermal conditions. This approach implies that the nucleation intensity of new particles is suppressed in spherical diffusion regions with certain sizes that surround previously nucleated supercritical particles and remaining unchanged in the rest of the medium. It has been shown that, when self-similar solutions are used for nonstationary equations of substance diffusion to particles and heat transfer from the particles, the ratio between the excluded volume and the particle volume is independent of particle size, thereby enabling one to analytically solve the integral equation for the excluded volume throughout a system as a time function at the stage of nucleation. The main characteristics of the phase transition have been found for the end of the stage of nucleation. Comparison has been carried out with the characteristics obtained in terms of the isothermal and nonisothermal nucleation theory upon uniform vapor consumption and heat dissipation (the mean-field approximation of vapor supersaturation and temperature).  相似文献   

18.
We report the results of digital video microscopy studies of the large particle displacements in a quasi-two-dimensional binary mixture of large (L) and small (S) colloid particles with diameter ratio sigma(L)/sigma(S)=4.65, as a function of the large and small colloid particle densities. As in the case of the one-component quasi-two-dimensional colloid system, the binary mixtures exhibit structural and dynamical heterogeneity. The distribution of large particle displacements over the time scale examined provides evidence for (at least) two different mechanisms of motion, one associated with particles in locally ordered regions and the other associated with particles in locally disordered regions. When rhoL*=Npisigma(L) (2)/4A< or =0.35, the addition of small colloid particles leads to a monotonic decrease in the large particle diffusion coefficient with increasing small particle volume fraction. When rhoL* > or =0.35 the addition of small colloid particles to a dense system of large colloid particles at first leads to an increase in the large particle diffusion coefficient, which is then followed by the expected decrease of the large particle diffusion coefficient with increasing small colloid particle volume fraction. The mode coupling theory of the ideal glass transition in three-dimensional systems makes a qualitative prediction that agrees with the initial increase in the large particle diffusion coefficient with increasing small particle density. Nevertheless, because the structural and dynamical heterogeneities of the quasi-two-dimensional colloid liquid occur within the field of equilibrium states, and the fluctuations generate locally ordered domains rather than just disordered regions of higher and lower density, it is suggested that mode coupling theory does not account for all classes of relevant fluctuations in a quasi-two-dimensional liquid.  相似文献   

19.
Thermo-sensitive poly (N-isopropylacrylamide) (PNIPA) hydrogel with fast response rate was prepared by polymerizing N-isopropylacrylamide (NIPA) in an aqueous hydroxyl-propyl-methyl cellulose solution. The volume phase transition temperature of PNIPA hydrogels was characterized by differential scanning calorimetry (DSC), and the surface morphology was observed by scanning electron microscopy (SEM). The swelling ratios of the hydrogels at different temperatures were measured. Furthermore, the deswelling kinetics of the hydrogels was also studied by measuring their water retention capacity. In comparison with a conventional PNIPA hydrogel prepared in water, the hydrogel synthesized in aqueous hydroxyl-propyl-methyl cellulose solution has higher swelling ratios at temperatures below the lower critical solution temperature and exhibits a much faster response rate to temperature changes. For example, the hydrogel made in aqueous hydroxyl-propyl-methyl cellulose solution lost 89% water within 1 min and about 93% water in 4 min, whereas the conventional hydrogel lost only about 66% water in 15 min from the deswelling measurement in similar conditions. Translated from Chinese Journal of Applied Chemistry, 2006, 23(6): 581–585 (in Chinese)  相似文献   

20.
A novel class of functional poly(N-isopropylacrylamide) (PNIPAAm) hydrogels with pendent micellar structure resulting from the pending amphiphilic polymers was designed and prepared. The influence of the pendent micellar structure on the properties of the resulted PNIPAAm hydrogels was examined in terms of morphology observed by scanning electron microscopy, thermal response through differential scanning calorimetry, and deswelling/reswelling kinetics upon external temperature changes. In comparison with the conventional ones, the novel PNIPAAm hydrogels with pendent micellar structure presented improved temperature-sensitive properties, i.e., enlarged water containing capability at room temperature, as well as improved deswelling rate upon heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号