首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow-induced pulsations are frequently observed in pipe networks. In the present work we focus on the case of flow-induced pulsations in a pipe system composed of six equally spaced deep closed side branches. These pulsations are self-sustained aeroacoustic oscillations driven by the instability of the flow along the closed branches. The prediction of pulsations in such complex systems has not yet been proved to be possible, indeed the methods proposed in the literature have only been applied to relatively simple geometries, mainly single or double side branch systems. We propose a prediction model of the self-sustained oscillations in multiple deep side branch systems. This has been established by means of an analytical model for the acoustic wave propagation in which a semi-analytical source model is included. Detuning of the acoustic resonator is often considered as a possible remedial measure to suppress pulsations. Although this countermeasure appears to be very effective for double side branch systems in cross configuration, its effectiveness has never been assessed for different geometries. The effectiveness of the length-detuning on the six side branch system appear to be limited and depends on the upstream and downstream acoustic boundary conditions of the main pipe.  相似文献   

2.
The mean flow of gas in a pipe past a cavity can excite the resonant acoustic modes of the cavity--much like blowing across the top of a bottle. The periodic shedding of vortices from the leading edge of the mouth of the cavity feeds energy into the acoustic modes which, in turn, affect the shedding of the next vortex. This so-called aeroacoustic whistle can excite very high amplitude acoustic standing waves within a cavity defined by coaxial side branches closed at their ends. The amplitude of these standing waves can easily be 20% of the ambient pressure at optimal gas flow rates and ambient pressures within the main pipe. A standing wave thermoacoustic heat pump is a device which utilizes the in-phase pressure and displacement oscillations to pump heat across a porous medium thereby establishing, or maintaining, a temperature gradient. Experimental results of a combined system of aeroacoustic sound source and a simple thermoacoustic stack will be presented.  相似文献   

3.

Abstract  

Systems with closed side branches are liable to an excitation of sound known as cavity tone. It may occur in pipe branches leading to safety valves or to boiler relief valves. The outbreak mechanism of the cavity tone has been ascertained by phase-averaged pressure measurements in previous research, while the relation between sound propagation and the flow field is still unclear due to the difficulty of detecting the instantaneous velocity field. It is possible to detect the two-dimensional instantaneous velocity field using high time-resolved particle image velocimetry (PIV). In this study, flow-induced acoustic resonance in a piping system containing closed side branches was investigated experimentally. A high time-resolved PIV technique was used to measure the gas flow in a cavity. Airflow containing oil mist as tracer particles was measured using a high-frequency pulse laser and a high-speed camera. The present investigation on the coaxial closed side branches is the first rudimentary study to visualize the fluid flow two-dimensionally in a cross-section using high time-resolved PIV, and to measure the pressure at the downstream side opening of the cavity by microphone. The fluid flows at different points in the cavity interact, with some phase differences between them, and the relation between the fluid flows was clarified.  相似文献   

4.
Self-sustained oscillations of the flow in a closed side branch system due to a coupling of vortex shedding with acoustical resonances are considered. The configuration consists of two closed side branches of same length placed opposite to each other along a main pipe. This is called a cross-junction. Numerical simulations, based on the Euler equations for two-dimensional inviscid and compressible flows, are performed. As the radiation into the main pipe is negligible at the resonance frequency, this acoustically closed system is a good test-case of such Euler numerical calculations. The numerical results are compared to acoustical measurements and flow visualization obtained in a previous study. Depending on the flow conditions, the predicted pulsation amplitudes are about 30-40% higher than the measured amplitudes. This is partially due to the absence of visco-thermal dissipation in the numerical model but also to the effect of wall vibrations in experiments. A simple analytical model is proposed for the prediction of the pulsation amplitudes. This model is based on Nelson's representation of the shear layer as a row of discrete vortices convected at constant velocity from the upstream edge towards the downstream edge. When the downstream edge is sharp, this results in a spurious interaction between the singularity of the vortices and of the edge flow. This artefact is partially compensated by suppressing the singularity of the acoustical flow at the edge, or when a junction with rounded edges, as found in engineering practice, is considered. In spite of its crudeness, the analytical model provides a fair prediction (within 30%) which makes it useful for engineering applications.  相似文献   

5.
Our study is focused on a phenomenon often encountered in flow carrying pipes, since flow instabilities caused by geometric features may generate acoustic signals and, thereafter, interact with these signals in such a way that powerful pure tones are produced. A modern example is found in the so-called ‘singing risers’, or the gas pipes connecting gas production platforms to the transport network. But the flow generated resonance in a fully corrugated circular pipe may be silenced by the addition of relatively low frequency flow oscillations induced by an acoustic generator. Experiments reported here, aimed at investigating in more detail the coupling between the flow in the pipe, the acoustically generated flow oscillations and the emitted resulting noise, are performed in a specifically designed facility. A rectangular transparent channel using glass walls enables us to use optical techniques to describe in detail the flow field in the corrugation vicinity, in addition to more standard hot-wire anemometry and acoustic pressure measurements with microphones, with and without the acoustically generated low-frequency oscillations.  相似文献   

6.
Drift of solid suspended particles under the action of longitudinal resonance vibrations of the gas column in a closed pipe is studied numerically. Nonlinear gas vibrations with the motion remaining to be laminar are considered. The gas velocity field contains periodic nonlinear waves and an acoustic flow, and the particles move under the action of the Stokes force. For the first, second, and third eigenfrequencies of the longitudinal gas column vibrations, distributions of light and heavy particles observed in the wave field of the closed pipe are obtained.  相似文献   

7.
An air flow in a pipe with two closed side-branches can induce high pressure pulsations in a pipe system. This phenomenon has been investigated and the results are reported in this paper. A simple theoretical model based on a wave transmission was used to determine a resonance condition associated with an acoustic coupling between branches. In the model a plane wave approximation and an impedance representation of a branch were applied. The experiment was carried out in a pipe system with a relatively large distance between branches compared to branch lengths. A frequency and a pressure of pulsations were measured in a wide range of length of downstream branch. A support for the theory is provided by a favorable comparison between experimental data and calculated resonant frequencies of the system.  相似文献   

8.
Violent folding of a flame front in a flame-acoustic resonance   总被引:1,自引:0,他引:1  
The first direct numerical simulations of violent flame folding because of the flame-acoustic resonance are performed. Flame propagates in a tube from an open end to a closed one. Acoustic amplitude becomes extremely large when the acoustic mode between the flame and the closed tube end comes in resonance with intrinsic flame oscillations. The acoustic oscillations produce an effective acceleration field at the flame front leading to a strong Rayleigh-Taylor instability during every second half period of the oscillations. The Rayleigh-Taylor instability makes the flame front strongly corrugated with elongated jets of heavy fuel mixture penetrating the burnt gas and even with pockets of unburned matter separated from the flame front.  相似文献   

9.
Excitation source of a side-branch shear layer   总被引:1,自引:0,他引:1  
  相似文献   

10.
It is well known that the acoustic performance of silencing elements decreases with an increase in exhaust gas flow. Tests were conducted on three orifice geometries of side-branches on an adaptive quarter-wave tube to determine which was the least compromised by the high-speed exhaust gas passing over the side-branch. The side-branch geometries that were tested were a sharp edge, a backward inclined branch, and a bell mouth. The experimental results show that the side-branch with a bell-mouth geometry resulted in the greatest noise reduction by an adaptive quarter-wave tube.  相似文献   

11.
Turbulent flow through a long pipe terminated by an axisymmetric cavity can give rise to self-sustained oscillations exhibiting a very strong coherence, as evidenced by the narrow-band character of corresponding amplitude spectra. These oscillations, associated with the turbulent axisymmetric jet passing through the cavity, are strongly influenced by the acoustic modes of the pipe. The frequencies of oscillation lie within or near the range of most “unstable” frequencies of the turbulent jet previously predicted by using concepts of inviscid hydrodynamic stability theory; consequently, these experiments show truly self-excited and strongly coherent “instability” of a fully turbulent, low Mach number (~10?2), axisymmetric flow undergoing separation, corroborating previous experiments involving the external forcing of free turbulent jets. As flow velocity or cavity length is varied, both upward and downward jumps in oscillation frequency are observed; the sign (up or down) of these jumps tends to systematically alternate with increase of velocity or length. The role of these frequency jumps is, in effect, to allow the oscillation of the flow to remain “locked-on” to a pipe mode over a wide range of impingement length or flow velocity. Moreover, these jumps exhibit two types of behavior: for the first kind, the predominant frequency makes a relatively continuous transition between stages and the frequency of the neighboring stage appears as a secondary component; for the second kind, there is a dead zone (where no oscillation occurs) between stages. The consequence of externally exciting the system is strongly dependent on whether the self-sustaining oscillation is relatively near, or well away from, a frequency jump. During excitation, the amplitudes of pressure fluctuations in the cavity substantially exceed the corresponding no-flow values only in regions away from the frequency jumps; at locations of jumps, there can be significant attenuation of the no-flow excitation amplitude. For the type of frequency jump involving a “dead zone”, enhancement of a given mode of oscillation can be achieved by externally exciting not only the given mode, but also neighboring modes. For the other type of jump, involving a relatively continuous transition from one stage to the next, the predominant mode of oscillation following the jump is that mode giving maximum amplitude response to excitation before the jump.  相似文献   

12.
This article describes a one-dimensional, linearized, analysis of fundamental mode sound generation and propagation in rigid-walled flow ducts with axial temperature variation. An acoustic wave equation, including damping effects and volume sources, is derived and its solution (in the absence of sources) by a numerical technique and an approximate analytical method is discussed. The “forced” wave equation is then solved (the existence of an oscillating solution to the “unforced” equation being assumed) for sound generation by a side-branch volume source in an infinite duct, and the results are applied to a duct of finite length. Reasonably good agreement is obtained between measurements and predictions of the sound pressure field in a flow duct, away from the source region.  相似文献   

13.
贾秋红  桂生  王坤  邵剑瑛  毛捷 《应用声学》2024,43(3):599-607
为了进一步提高全量程气体超声流量计的测量精度,基于多通道声波到时和实时温度,提出了一种交叉分段差分进化(Differential Evolution)支持向量回归(Support Vector Regression)DE-SVR模型。考虑到气体在不同流量条件下的流体状态不同,提出了交叉分段处理的方法,采用DE算法优化选取SVR参数。实验结果表明,对于16~1600m3/h全量程,交叉分段DE-SVR和传统积分方法计算气体流量的平均相对误差分别为0.00447和0.02781,前者较后者降低了83.93%;对于16~160m3/h小流量,交叉分段DE-SVR和无分段DE-SVR算法计算结果平均相对误差分别为0.00436和0.03214,前者较后者降低了86.43%。该方法有效避免了声道长度、探头角度以及管道直径等参数不确定性对流量计算的影响,为全量程气体流量的高精度测量提供了保障。  相似文献   

14.
In this article an implementation of a vocal tract model and its validation are described. The model uses a transmission line model to calculate pole and zero frequencies for a vocal tract with a closed side-branch such as a sublingual cavity. In the validation study calculated pole and zero frequencies from the model are compared with frequencies estimated using elementary acoustic formulas for a variety of vocal tract configurations.  相似文献   

15.
马艳  林书玉  徐洁 《物理学报》2018,67(3):34301-034301
计算了两个具有非球形扰动的气泡所组成系统的能量,并基于Lagrange方程得到了有声相互作用的非球形气泡的动力学方程和形状稳定性方程,研究了声场中非球形气泡间相互作用力对非球形气泡的形状不稳定性和气泡形状模态振幅的影响.研究结果表明声场中具有非球形扰动的气泡之间的耦合方式有两种:形状耦合模式和径向耦合模式,气泡之间的耦合方式取决于气泡形状扰动模态.由形状耦合及径向耦合产生的气泡之间的相互作用力能够改变单个气泡的形状不稳定及形状模态振幅,具体影响因素取决于声场驱动条件、气泡形状模态、相邻气泡的初始半径.  相似文献   

16.
Shock waves were explored in the thermoacoustic spontaneous gas oscillations occurring in a gas column with a steep temperature gradient. The results show that a periodic shock occurs in the traveling wave mode in a looped tube but not in the standing wave mode in a resonator. Measurements of the harmonic components of the acoustic intensity reveal a clear difference between them. The temperature gradient acts as an acoustic energy source for the harmonic components of the shock wave in the traveling wave mode but as an acoustic energy sink of the second harmonic in the standing wave mode.  相似文献   

17.
Corrugated pipes are widely used because they combine local rigidity with global flexibility. Whistling induced by flow through such pipes can lead to serious environmental and structural problems. The whistling of a multiple side branch system is compared to the whistling behavior of corrugated pipes. The study has been restricted to cavities with sharp edges which are convenient for theoretical modeling. The side branch depth is chosen to be equal to the side branch diameter, which corresponds to cavity geometries in typical corrugated pipes. The low frequency resonance modes of the multiple side branch system have been predicted by means of acoustic models, of which the validity has been tested experimentally. Several experiments have been carried out for characterizing the whistling behavior of the system. While the behavior of a multiple side branch system is interesting on its own it can be compared to that of corrugated pipes. These experiments show that the multiple side branch system is in many aspects a reasonable model for corrugated pipes. Advantage of the multiple side branch system is that it is an experimental setup allowing easy modification of cavity depth. We used this feature to identify the pressure nodes of the acoustic standing wave along the main pipe as the regions where sound is produced. This contradicts recent publications on corrugated pipes. Another interesting aspects is that the system appears to whistle at the second hydrodynamic mode of the cavities rather than at the first hydrodynamic mode. A prediction model for the whistling behavior is proposed, consisting of an energy balance, based on the vortex sound theory. The model predicts the observed Strouhal number but overestimates the acoustic fluctuation amplitude by a factor four.  相似文献   

18.
The oscillation and destruction of microbubbles under ultrasound excitation form the basis of contrast enhanced ultrasound imaging and microbubble assisted drug and gene delivery. A typical microbubble has a size of a few micrometers and consists of a gas core encapsulated by a shell. These bubbles can be driven into surface mode oscillations, which not only contribute to the measured acoustic signal but can lead to bubble destruction. Existing models of surface model oscillations have not considered the effects of a bubble shell. In this study a model was developed to study the surface mode oscillations in shelled bubbles. The effects of shell viscosity and elasticity on the surface mode oscillations were modeled using a Boussinesq-Scriven approach. Simulation was conducted using the model with various bubble sizes and driving acoustic pressures. The occurrence of surface modes and the number of ultrasound cycles needed for the occurrence were calculated. The simulation results show a significant difference between shelled bubbles and shell free bubbles. The shelled bubbles have reduced surface mode amplitudes and a narrower bubble size range within which these modes develop compared to shell free bubbles. The clinical implications were also discussed.  相似文献   

19.
Centrifugal pumps are a source of pressure and flow rate perturbations in hydraulic pumping systems. In particular, a significant excitation is usually induced at the blade-passing frequency and harmonics as a consequence of the fluid-dynamic interaction between the rotor and the stator. The magnitude of this excitation is very dependent on the internal geometry of the pump and on its point of operation, but it depends also on the acoustic response of the hydraulic network to the perturbations. The induced and transmitted perturbations can be either amplified or reduced depending on the pump-circuit acoustic coupling, and thus they can lead to excessive levels of noise and vibration under certain conditions. The purpose of the present investigation is the theoretical and experimental characterization of the perturbations induced in a laboratory pumping system, as a function of the acoustic impedance of the pipelines. For different points of operation, the blade-passing frequency impedance is changed by varying the speed of rotation and, additionally, by modifying a closed side branch of the hydraulic system (that is, in the absence of net flow through it). For the theoretical calculations an acoustic model, based on matrix formulation, is applied to obtain the influence of different acoustic impedances of the suction side on the pressure fluctuations at the pump. Test measurements with a fast-response piezoelectric pressure transducer situated at the tongue region of the pump under the same system configurations confirm the significant effect of the pump-circuit acoustic coupling on the pressure perturbations.  相似文献   

20.
低阻抗水泥固井质量检测是油气田生产亟需解决的问题。套管中传播的最低阶泄漏弯曲型Lamb波(以下简称为A0弯曲型Lamb波)对套管后介质尤其是低阻抗水泥的声学参数和胶结状况具有很高的敏感性。通过建立多层介质模型,从理论上计算了其频散和衰减与套管后介质属性及水泥环第Ⅰ界面胶结状况的关系,并数值模拟了有限尺寸定向辐射探头激发和接收的全波波形。结果表明,在套管后耦合慢速水泥时,A0弯曲型Lamb波的频散曲线存在断点,曲线分为两个分支;A0弯曲型Lamb波的衰减在套管后耦合慢速水泥时最大并且对水泥环第Ⅰ界面胶结差时流体环厚度有很高的灵敏度,利用其衰减可以实现对套管后介质类型、水泥环第Ⅰ界面胶结状况及窜槽厚度的有效判别。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号