首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A method of analysing nucleation and crystallization kinetics, based on real time image analysis and hot stage optical microscopy, has been used to investigate the isothermal crystallization of different grades polyoxymethylene. The data were compared with results from differential scanning calorimetry (DSC), using a simple numerical simulation to model the effects of finite smaple thickness on the form of the isothermal DSC curves. This simulation was then used to predict the microstructural development in a bulk sample for different boundary conditions, taking into account latent heat evolution and diffusion during crystallization.  相似文献   

2.
The spherulite growth, nucleation-related,K g, parameter values obtained from isothermal data (by DSC or optical microscopy) and two other adjustable parameters (the spherulite growth rate preexponential factor and the Avrami's or Tobin's exponent,n) have been used with Nakamura's and Tobin's modified non-isothermal equations to model the kinetics of polymer non-isothermal crystallization. Malkin's model was also tested, for comparison. It is shown that, for polymers that crystallize on cooling almost entirely at temperatures higher than the maximum growth rate temperature, this Tobin's-like non-isothermal model accurately describes the experimental behaviour with only 2 parameters.  相似文献   

3.
Classical kinetic theories of polymer crystallization were applied to isothermal crystallization kinetics data obtained by polarized optical microscopy (PLOM) and differential scanning calorimetry (DSC). The fitted parameters that were proportional to the energy barriers obtained allow us to quantitatively estimate the nucleation and crystal growth contributions to the overall energy barrier associated to the crystallization process. It was shown that the spherulitic growth rate energy barrier found by fitting PLOM data is almost identical to that obtained by fitting the isothermal DSC crystallization data of previously self‐nucleated samples. Therefore, we demonstrated that by self‐nucleating the material at the ideal self‐nucleation (SN) temperature, the primary nucleation step can be entirely completed and the data obtained after subsequent isothermal crystallization by DSC contains only contributions from crystal growth or secondary nucleation. In this way, by employing SN followed by isothermal crystallization, we propose a simple method to obtain separate contributions of energy barriers for primary nucleation and for crystal growth, even in the case of polymers where PLOM data are very difficult to obtain (because they exhibit very small spherulites). Comparing the results obtained with poly(p‐dioxanone), poly(ε‐caprolactone), and a high 1,4 model hydrogenated polybutadiene, we have interpreted the differences in primary nucleation energy barriers as arising from differences in nuclei density. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1478–1487, 2008  相似文献   

4.
Differential scanning calorimetry (dual furnace, null-balance, DSC) and optical microscopy (OM) have been used to study the isothermal crystallization kinetics of poly(oxymethylene)-POM. The non-isothermal crystallization of the same material has also been studied by optical microscopy. A very controversial problem is whether the isothermal kinetic parameters may be applied to describe the non-isothermal crystallization. The results show that the kinetic spherulite growth parameters obtained by non-isothermal optical microscopy are, within the experimental errors involved, the same as those obtained by isothermal optical microscopy or isothermal DSC. The importance of this finding is highlighted.  相似文献   

5.
The crystallization behavior of a new sequential polyester constituted by glycolic acid and 4‐hydroxybutyric acid has been studied under nonisothermal conditions. Nonisothermal melt crystallization has been followed by means of hot‐stage optical microscopy (HSOM), with experiments performed at different cooling rates. Two crystallization regimes have been found, which is in good agreement with previous isothermal studies and with the different spherulitic morphologies that were observed. The kinetics of both glass and melt crystallizations has also been studied by differential scanning calorimetry (DSC) and considering the typical Avrami, Ozawa, and Cazé analyses. Only the last gave Avrami exponents, which were in good agreement with those measured under isothermal conditions, suggesting a spherulitic growth with a predetermined nucleation. Isoconversional data of melt and glass nonisothermal crystallizations have been combined to obtain the Hoffman and Lauritzen parameters. Results again indicate the existence of two crystallization regimes with nucleation constants close to those deduced from isothermal DSC experiments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 121–133, 2008  相似文献   

6.
The effect of phthalimide compound on the nonisothermal and isothermal crystallization behavior of poly(lactic acid) (PLA) was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy. It was found that the incorporation of a small amount of phthalimide promoted the crystallization of PLA significantly. The Avrami model was applied to analyze the isothermal crystallization kinetics. It was found that the Avrami exponent was higher for PLA/phthalimide blends than for neat PLA, indicating a heterogeneous nucleation mechanism. These results indicate that phthalimide may act as an efficient nucleating agent to improve the crystallization of PLA and expand its applications.  相似文献   

7.
The morphology of crystals, isothermal and non-isothermal crystallization of poly(methylene terephthalate) (PMT) have been investigated by using polarized optical microscopy and differential scanning calorimeter (DSC). The POM photographs displayed only several Maltese cross at the beginning short time of crystallization indicating that some spherulites had been formed. The crystal cell belonged to the Triclinic crystal systems and the cell dimensions were calculated from the WAXD pattern. The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and non-isothermal crystallization. The Ozawa theory was also used to analyze the primary stage of non-isothermal crystallization. The Avrami exponents n were evaluated to be in the range of 2-3 for isothermal crystallization, and 3-4 for non-isothermal crystallization. The Ozawa exponents m were evaluated to be in the range of 1-3 for non-isothermal crystallization in the range of 135-155 °C. The crystallization activation energy was calculated to be −78.8 kJ/mol and −94.5 kJ/mol, respectively, for the isothermal and non-isothermal crystallization processes by the Arrhenius’ formula and the Kissinger’s methods.  相似文献   

8.
After isothermal crystallization, poly(ethylene terephthalate) (PET) showed double endothermic behavior in the differential scanning calorimetry (DSC) heating scan. During the heating scans of semicrystalline PET, a metastable melt which comes from melting thinner lamellar crystal populations formed between the low and the upper endothermic temperatures. The metastable melt can recrystallize immediately just above the low melting temperature and form thicker lamellae than the original ones. The thickness and perfection depends on the crystallization time and crystallization temperature. The crystallization kinetics of this metastable melt can be determined by means of DSC. The kinetics analysis showed that the isothermal crystallization of the metastable PET melt proceeds with an Avrami exponent of n = 1.0 ∼ 1.2, probably reflecting one‐dimensional or irregular line growth of the crystal occurring between the existing main lamellae with heterogeneous nucleation. This is in agreement with the hypothesis that the melting peaks are associated with two distinct crystal populations with different thicknesses. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 53–60, 2000  相似文献   

9.
This article investigated the melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) (PBS) and its copolyester (PBSR) modified with rosin maleopimaric acid anhydride, using wide‐angle X‐ray diffraction, differential scanning calorimeter (DSC), and polarized optical microscope. Subsequent DSC scans of isothermally crystallized PBS and PBSR exhibited two melting endotherms, respectively, which was due to the melt‐recrystallization process occurring during the DSC scans. The equilibrium melting point of PBSR (125.9 °C) was lower than that of PBS (139 °C). The commonly used Avrami equation was used to describe the isothermal crystallization kinetics. For nonisothermal crystallization studies, the model combining Avrami equation and Ozawa equation was employed. The result showed a consistent trend in the crystallization process. The crystallization rate was decreased, the perfection of crystals was decreased, the recrystallization was reduced, and the spherulitic morphologies were changed when the huge hydrogenated phenanthrene ring was added into the chain of PBS. The activation energy (ΔE) for the isothermal crystallization process determined by Arrhenius method was 255.9 kJ/mol for PBS and 345.7 kJ/mol for PBSR. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 900–913, 2006  相似文献   

10.
A simultaneous differential scanning calorimeter (DSC)-optical video microscope instrument has been developed. The instrument development included slight modifications to the sample head of a Perkin-Elmer DSC-7, along with the use of a CCD camera and magnifying lenses. The instrument permitted simultaneous following of optical and thermal events during isothermal and non-isothermal DSC experiments. The DSC curves were almost identical to those given by a standard DSC-7. The operational temperature range of the instrument is between –160 to 600°C. The capabilities of the DSC-video microscope are illustrated by examples of ice crystallization data in aqueous solutions of glycerol and dimethyl sulphoxide.Naval Medical Research and Development Command, Work Unit No. 61153 N. MRO 4120.001-1462 NM R&D. The opinions and assertions contained herein are the private ones of the writers and are not to be construed as official nor as representing those of Defense or of the Navy.  相似文献   

11.
Syndiotactic 1,2-polybutadiene/organoclay nanocomposites were prepared and characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), polarized optical microscopy (POM), and differential scanning calorimetry (DSC), respectively. The XRD shows that exfoliated nanocomposites are formed dominantly at lower clay concentrations (less than 2%), at higher clay contents intercalated nanocomposites dominate. At the same time, the XRD indicates that the crystal structures of sPB formed in the sPB/organoclay nanocomposites do not vary, only the relative intensity of the peaks corresponding to (0 1 0) and (2 0 0)/(1 1 0) crystal planes, respectively, varies. The DSC and POM indicate that organoclay layers can improve cooling crystallization temperature, crystallization rate and reducing the spherulite sizes of sPB. TGA shows that under argon flow the nanocomposites exhibit slight decrease of thermal stability, while under oxygen flow the resistance of oxidation and thermal stability of sPB/organoclay nanocomposites were significantly improved relative to pristine sPB. The primary and secondary crystallization for pristine sPB and sPB/organoclay (2%) nanocomposites were analyzed and compared based on different approaches. The nanocomposites exhibit smaller Avrami exponent and larger crystallization rate constant, with respect to pristine sPB. Primary crystallization under isothermal conditions displays both athermal nucleation and three-dimensional spherulite growth and under nonisothermal processes the mechanism of primary crystallization becomes very complex. Secondary crystallization shows a lower-dimensional crystal growth geometry for both isothermal and nonisothermal conditions. The activation energy of crystallization of sPB and sPB/organoclay nanocomposites under isothermal and nonisothermal conditions were also calculated based on different approaches.  相似文献   

12.
The crystallization kinetics of polypropylene (PP) with or without sodium benzoate as a nucleating agent were investigated by means of DSC and polarized optical microscopy in isothermal and nonisothermal modes. A modified Avrami equation was applied to the kinetic analysis of isothermal crystallization. The addition of the nucleating agent up to its saturation concentration increased the crystallization temperature by 15 °C and shortened both the isothermal and nonisothermal crystallization half‐times. It was concluded that the sodium benzoate acted as a good nucleating agent for α‐form PP. By adding the nuclefier to PP, adequately controlled spherulites increased the mechanical properties including especially the Izod impact strength and shortened cycle time of PP. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1001–1016, 2001  相似文献   

13.
通过示差扫描量热仪(DSC)和广角X射线衍射仪(WAXD)研究了聚左旋乳酸(PLLA)的光学纯度(91.6%、93.3%、94.0%、97.0%、98.4%)对聚乳酸结晶和熔融行为的影响。 在非等温结晶过程中,随着光学纯度的提高,聚乳酸的结晶峰值温度、熔点、熔融焓均提高。 在等温结晶过程中,PLLA的半结晶时间(t1/2)随着光学纯度的增加而减少,在结晶温度100~110 ℃区间内半结晶时间均达到最小值;含有不同光学纯度PLLA的Avrami指数n≈3,表明光学纯度的变化不能改变聚乳酸以三维球晶生长的异相成核机理。 随着光学纯度的增加,聚乳酸δ-晶型转变为α-晶型的临界温度升高。 聚乳酸的结晶和熔融行为对光学纯度具有依赖性。  相似文献   

14.
The effect of tetramethylenedicarboxylic dibenzoylhydrazide (designated here as TMC) on the nonisothermal and isothermal crystallization behavior of PLA was investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide angle X-ray diffraction (WAXD). TMC shows excellent nucleating effect on PLA. With the addition of 0.05 wt% TMC, the crystallization half-time of PLA decreases from 26.06 to 6.13 min at 130 °C. The isothermal crystallization data were further analyzed by the Avrami model. The values of the Avrami exponent of the blends are comparable to that of neat PLA, indicating that the presence of TMC does not change the crystallization mechanism of the matrix. The observation from POM and WAXD measurements showed that the presence of TMC increases significantly the nuclei density of PLA but has no discernible effect on its crystalline structure.  相似文献   

15.
The crystallization behavior of nylon 1212, irradiated at 60Co γ‐rays (50 kGy), was studied by a rheometer, polarized optical microscopy (POM), and differential scanning calorimeter (DSC). The results showed that irradiated nylon 1212 samples exhibited abnormal crystallization behavior during the crystallization process: The Avrami exponent n was calculated and was found to be in the range from 2.06–2.41 for isothermal crystallization, and from 2.67–4.91 for nonisothermal crystallization; the spherulite morphology also changed largely by polarized optical microscopy (POM); the crystallization activation energy ΔE for isothermal and nonisothermal crystallization process of irradiated nylon 1212 are determined to be 57.4 kJ/mol and 78.65 kJ/mol, respectively, which are lower than that of nonirradiated nylon 1212. At the same time, a new method by a combination of the Avrami and Ozawa equations was successfully applied to analyze the noncrystallization process of irradiated nylon 1212. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2326–2333, 2005  相似文献   

16.
The simplen th order model equation combined with the Arrhenius approach of the temperature dependency of the reaction rate constant is widely used in thermal analysis. The new Mettler software package for thermal analysis, GraphWare TA72 allows to access a full model comprising the power law and the crystallization kinetics (AvramiErofe'ev). The kinetics of the following reactions are studied to illustrate some applications:
  • thermal decomposition of dissolved dibenzoylperoxide, (dynamic and isothermal DSC measurement)
  • crystallization of polyethylene terephthalate (PET) (isothermal DSC measurements).
  • The kinetic model applied and the accuracy of the kinetic data obtained are discussed by means of a comparison of a predicted behaviour with the kinetic data measured isothermally.  相似文献   

    17.
    Copolyester was synthesized and characterized as having 89.9 mol % ethylene succinate units and 10.1 mol % butylene succinate units in a random sequence, as revealed by NMR. Isothermal crystallization kinetics was studied in the temperature range (Tc) from 30 to 73 °C using differential scanning calorimetry (DSC). The melting behavior after isothermal crystallization was investigated using DSC by varying the Tc, the heating rate and the crystallization time. DSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are associated primarily with the melting of lamellar crystals with various stabilities. As the Tc increases, the contribution of recrystallization slowly decreases and finally disappears. A Hoffman‐Weeks linear plot gives an equilibrium melting temperature of 107.0 °C. The spherulite growth of this copolyester from 80 to 20 °C at a cooling rate of 2 or 4 °C/min was monitored and recorded using an optical microscope equipped with a CCD camera. Continuous growth rates between melting and glass transition temperatures can be obtained after curve‐fitting procedures. These data fit well with those data points measured in the isothermal experiments. These data were analyzed with the Hoffman and Lauritzen theory. A regime II → III transition was detected at around 52 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2431–2442, 2008  相似文献   

    18.
    In the DSC technique, isothermal crystallization experiments are usually performed on thin flat specimens, but their interpretation generally uses theories developed for an unbounded volume. In this paper, isothermal crystallization of spherical entities in the volume limited by two parallel infinite planes is considered. Our model, derived from Avrami's theory, gives an analytical expression for the transformed volume fraction as a function of time. It is shown that the influence of thickness becomes important when thickness becomes of the order of or smaller than the average spherulite radius. The main effects of a decreasing thickness are a slower crystallization kinetics and a decrease in the Avrami exponent. These results can be used to interpret experimental data obtained in isothermal polymer crystallization.  相似文献   

    19.
    The well dispersion of functionalized multi‐walled carbon nanotube (f‐MWCNT) in nylon 6 matrix was prepared by solution mixing techniques. The isothermal and nonisothermal crystallization kinetics of nylon 6 and nylon 6/f‐MWCNT nanocomposites were studied by differential scanning calorimetry (DSC), X‐ray diffraction and polarized optical microscopy analysis. DSC isothermal results revealed that the activation energy of nylon 6 extensively decreased by adding 1 wt % f‐MWCNT into nylon 6, suggesting that the addition of small amount of f‐MWCNT probably induces the heterogeneous nucleation. Nevertheless, the addition of more f‐MWCNT into nylon 6 matrix reduced the transportation ability of polymer chains during crystallization process and thus increased the activation energy. The nonisothermal crystallization of nylon 6/f‐MWCNT nanocomposites was also discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 158–169, 2008  相似文献   

    20.
    Melt, cold isothermal crystallization kinetics, and multiple melting phenomena are investigated by differential scanning calorimetry (DSC) for a flame‐retardant phosphorus containing copolyester. The crystallization kinetics was investigated by the Avrami equation. The Avrami exponent is about 2.6 for melt crystallization and about 2 for cold crystallization. The crystallization activation energy for melt crystallization and for cold crystallization is −64.7 and 145.5, respectively. Three melting endotherms are found in the DSC scan, and they are explained in terms of secondary crystallization, primary crystallization, and recrystallization during the scan. A strong evidence of a two‐stage crystallization mechanism was also observed in the DSC isothermal experiment and X‐ray diffraction. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2269–2277, 1999  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号