首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
It is shown that if G is a graph of order p ≥ 2 such that deg u + deg vp ? 1 for all pairs u, v of nonadjacent vertices, then the edge-connectivity of G equals the minimum degree of G. Furthermore, if deg u + deg vp for all pairs u, v of nonadjacent vertices, then either p is even and G is isomorphic to Kp2 × K2 or every minimum cutset of edges of G consists of the collection of edges incident with a vertex of least degree.  相似文献   

2.
In a graph G, a set X is called a stable set if any two vertices of X are nonadjacent. A set X is called a dominating set if every vertex of V – X is joined to at least one vertex of X. A set X is called an irredundant set if every vertex of X, not isolated in X, has at least one proper neighbor, that is a vertex of V – X joined to it but to no other vertex of X. Let α′ and α, γ, and Γ, ir and IR, denote respectively the minimum and maximum cardinalities of a maximal stable set, a minimal dominating set, and a maximal irredundant set. It is known that ir ? γ ? α′ ? α ? Γ ? IR and that if G does not contain any induced subgraph isomorphic to K1,3, then γ = α′. Here we prove that if G contains no induced subgraph isomorphic to K1,3 or to the graph H of figure 1, then ir = γ = α′. We prove also that if G contains no induced subgraph isomorphic to K1,3, to H, or to the graph h of figure 3, then Γ = IR. Finally, we improve a result of Bollobas and Cockayne about sufficient conditions for γ = ir in terms of forbidden subgraphs.  相似文献   

3.
A set X of vertices of G is an independent dominating set if no two vertices of X are adjacent and each vertex not in X is adjacent to at least one vertex in X. Independent dominating sets of G are cliques of the complement G of G and conversely.This work is concerned with the existence of disjoint independent dominating sets in a graph G. A new parameter, the maximum number of disjoint independent dominating sets in G, is studied and the class of graphs whose vertex sets partition into independent dominating sets is investigated.  相似文献   

4.
For finite graphs F and G, let NF(G) denote the number of occurrences of F in G, i.e., the number of subgraphs of G which are isomorphic to F. If F and G are families of graphs, it is natural to ask then whether or not the quantities NF(G), FF, are linearly independent when G is restricted to G. For example, if F = {K1, K2} (where Kn denotes the complete graph on n vertices) and F is the family of all (finite) trees, then of course NK1(T) ? NK2(T) = 1 for all TF. Slightly less trivially, if F = {Sn: n = 1, 2, 3,…} (where Sn denotes the star on n edges) and G again is the family of all trees, then Σn=1(?1)n+1NSn(T)=1 for all TG. It is proved that such a linear dependence can never occur if F is finite, no FF has an isolated point, and G contains all trees. This result has important applications in recent work of L. Lovász and one of the authors (Graham and Lovász, to appear).  相似文献   

5.
A vertex x in a subset X of vertices of an undirected graph is redundant if its closed neighbourhood is contained in the union of closed neighbourhoods of vertices of X?{x}. In the context of a communications network, this means that any vertex which may receive communications from X may also be informed from X?{x}. The lower and upper irredundance numbers ir(G) and IR(G) are respectively the minimum and maximum cardinalities taken over all maximal sets of vertices having no redundancies. The domination number γ(G) and upper domination number Γ(G) are respectively the minimum and maximum cardinalities taken over all minimal dominating sets of G. The independent domination number i(G) and the independence number β(G) are respectively the minimum and maximum cardinalities taken over all maximal independent sets of vertices of G.A variety of inequalities involving these quantities are established and sufficient conditions for the equality of the three upper parameters are given. In particular a conjecture of Hoyler and Cockayne [9], namely i+β?2p + 2δ - 22pδ, is proved.  相似文献   

6.
It is shown that H = Γ(T)v is normal in G = Γ(Tv) for any tree T and any vertex v, if and only if, for all vertices u in the neighborhood N of v, the set of images of u under G is either contained in N or has precisely the vertex u in common with N and every vertex in the set of images is fixed by H. Further, if S is the smallest normal subgroup of G containing H then GS is the direct product of the wreath products of various symmetric groups around groups of order 1 or 2. The degrees of the symmetric groups involved depend on the numbers of isomorphic components of Tv and the structure of such components.  相似文献   

7.
First we characterize the convex hull of the edges of a graph, edges viewed as the characteristic function of the hereditary closure of some subset of the 2-elements set of a finite set X. This characterization becomes more simple for a class of graphs that we call near bipartite, NBP in short. This class is then characterized as the class of graphs such that ?x?X, GX\r(x), the induced subgraph of the complementary of the neighbourhood of x, is bipartite. We made a partial study of this class, whose interest is justified by the constatation that the following classes are strictly include: L(G) the edge complementary of the line graph of G. NBP, K13-free graphs.  相似文献   

8.
The Ramsey Number r(G1, G2) is the least integer N such that for every graph G with N vertices, either G has the graph G1 as a subgraph or G, the complement of G, has the graph G2 as a subgraph.In this paper we embed the paths Pm in a much larger class T of trees and then show how some evaluations by T. D. Parsons of Ramsey numbers r(Pm, K1,n), where K1,n is the star of degree n, are also valid for r(Tm, K1,n) where TmT.  相似文献   

9.
For a graph G, let ?(G) denote the maximum number k such that G contains a circuit with k diagonals.Theorem. For any graph G with minimum valencyn? 3, ?(G) ? 12 (n+1)(n-2).If the equality holds and G is connected, then either G is isomorphic to Kn+1 or G is separable and each of its terminal blocks is isomorphic to Kn+1, or Kn+1 with one edge subdivided.  相似文献   

10.
Let G be a graph with vertex-set V(G) and edge-set X(G). Let L(G) and T(G) denote the line graph and total graph of G. The middle graph M(G) of G is an intersection graph Ω(F) on the vertex-set V(G) of any graph G. Let F = V′(G) ∪ X(G) where V′(G) indicates the family of all one-point subsets of the set V(G), then M(G) = Ω(F).The quasi-total graph P(G) of G is a graph with vertex-set V(G)∪X(G) and two vertices are adjacent if and only if they correspond to two non-adjacent vertices of G or to two adjacent edges of G or to a vertex and an edge incident to it in G.In this paper we solve graph equations L(G) ? P(H); L(G) ? P(H); P(G) ? T(H); P(G) ? T(H); M(G) ? P(H); M(G) ? P(H).  相似文献   

11.
A subset of the vertices of a graph is independent if no two vertices in the subset are adjacent. The independence number α(G) is the maximum number of vertices in an independent set. We prove that if G is a planar graph on N vertices then α(G)/N ? 29.  相似文献   

12.
If one can associate with each vertex of a graph an interval of a line, so that two intervals intersect just when the corresponding vertices are joined by an edge, then one speaks of an interval graph.It is shown that any graph on v vertices is the intersection (“product”) of at most [12v] interval graphs on the same vertex set.For v=2k, k factors are necessary for, and only for, the complete k-partite graph K2,2,…,2.Some results for the hypergraph generalization of this question are also obtained.  相似文献   

13.
If X is a Cayley graph of a group G possessing a normal subgroup N, then there is a quotient graph of X which is a Cayley graph of GN. With the aid of this result, it is shown that the free product of at least two and at most countably many groups, each of which is at most countably generated, admits a graphical regular representation.  相似文献   

14.
A graph G is locally connected if the subgraph induced by the neighbourhood of each vertex is connected. We prove that a locally connected graph G of order p ≥ 4, containing no induced subgraph isomorphic to K1,3, is Hamilton-connected if and only if G is 3-connected. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Let G be a quadripartite graph with N vertices in each vertex class and each vertex is adjacent to at least vertices in each of the other classes. There exists an N0 such that, if N?N0, then G contains a subgraph that consists of N vertex-disjoint copies of K4.  相似文献   

16.
A graph G is induced matching extendable, shortly IM-extendable, if every induced matching of G is included in a perfect matching of G. For a nonnegative integer k, a graph G is called a k-edge-deletable IM-extendable graph, if, for every FE(G) with |F|=k, GF is IM-extendable. In this paper, we characterize the k-edge-deletable IM-extendable graphs with minimum number of edges. We show that, for a positive integer k, if G is ak-edge-deletable IM-extendable graph on 2n vertices, then |E(G)|≥(k+2)n; furthermore, the equality holds if and only if either GKk+2,k+2, or k=4r−2 for some integer r≥3 and GC5[N2r], where N2r is the empty graph on 2r vertices and C5[N2r] is the graph obtained from C5 by replacing each vertex with a graph isomorphic to N2r.  相似文献   

17.
A subset of vertices D of a graph G is a dominating set for G if every vertex of G not in D is adjacent to one in D. The cardinality of any smallest dominating set in G is denoted by γ(G) and called the domination number of G. Graph G is said to be γ-vertex-critical if γ(G-v)<γ(G), for every vertex v in G. A graph G is said to be factor-critical if G-v has a perfect matching for every choice of vV(G).In this paper, we present two main results about 3-vertex-critical graphs of odd order. First we show that any such graph with positive minimum degree and at least 11 vertices which has no induced subgraph isomorphic to the bipartite graph K1,5 must contain a near-perfect matching. Secondly, we show that any such graph with minimum degree at least three which has no induced subgraph isomorphic to the bipartite graph K1,4 must be factor-critical. We then show that these results are best possible in several senses and close with a conjecture.  相似文献   

18.
A graph G of order p ? 3 is called n-hamiltonian, 0 ? n ? p ? 3, if the removal of any m vertices, 0 ? m ? n, results in a hamiltonian graph. A graph G of order p ? 3 is defined to be n-hamiltonian, ?p ? n ? 1, if there exists ?n or fewer pairwise disjoint paths in G which collectively span G. Various conditions in terms of n and the degrees of the vertices of a graph are shown to be sufficient for the graph to be n-hamiltonian for all possible values of n. It is also shown that if G is a graph of order p ? 3 and K(G) ? β(G) + n (?p ? n ? p ? 3), then G is n-hamiltonian.  相似文献   

19.
A pair (X, B) will be a t-wise balanced design (tBD) of type t?(v, K, λ) if B = (Bi: i ? I) is a family of subsets of X, called blocks, such that: (i) |X| = v ? N, where N is the set of positive integers; (ii) 1?t?|Bi|?K?N, for every i ? I; and (iii) if T ? X, |T| = t, then there are λ ? N indices i ? I where T ? Bi. Throughout this paper we make three restrictions on our tBD's: (1) there are no repeated blocks, i.e. B will be a set of subsets of X; (2) t ? K or there are no blocks of size t; and (3) Pk(X)?B or B does not contain all k-subsets of X for any t<k?v. Note then that X ? B. Also, if we give the parameters of a specific tBD, then we will choose a minimal K.We focus on the t?((p2), K, λ) designs with the symmetric group Sp as automorphism group, i.e. X will be the set of v = (p2) labelled edges of the undirected complete graph Kp and if B ? B then all subgraphs of Kp isomorphic to B are also in B. Call such tBD's ‘graphical tBD's’. We determine all graphical tBD's with λ = 1 or 2 which will include one with parameters 4?(15,{5,7},1).  相似文献   

20.
A simple graph with n vertices is called Pi-connected if any two distinct vertices are connected by an elementary path of length i. In this paper, lower bounds of the number of edges in graphs that are both P2- and Pi-connected are obtained. Namely if i?12(n+1), then |E(G)|?((4i?5)/(2i?2))(n?1), and if i > 12(n+ 1), then |E(G)|?2(n?1) apart from one exeptional graph. Furthermore, extremal graphs are determined in the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号