首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tone usually declines in loudness when preceded by a more intense inducer tone. This phenomenon is called "loudness recalibration" or "induced loudness reduction" (ILR). The present study investigates how ILR depends on level, loudness, and duration. A 2AFC procedure was used to obtain loudness matches between 2500-Hz comparison tones and 500-Hz test tones at 60 and 70 dB SPL, presented with and without preceding 500-Hz inducer tones. For 200-ms test and comparison tones, the amount of ILR did not depend on inducer level (set at 80 dB SPL and above), but ILR was greater with 200- than with 5-ms inducers, even when both were equally loud. For 5-ms tones, ILR was as great with 5- as with 200-ms inducers and about as great as when test and inducer tones both lasted 200 ms. These results suggest that (1) neither the loudness nor the SPL of the inducer alone governs ILR, and (2) inducer duration must equal or exceed test-tone duration to yield maximal amounts of ILR. Further analysis indicates that the efferent system may be partly responsible for ILR of 200-ms test tones, but is unlikely to account for ILR of 5-ms tones.  相似文献   

2.
Two experiments were conducted to reexamine the relation between loudness and the bandwidth of complex stimuli. In experiment 1, experimental stimuli consisting of a 2000-Hz pure tone and ten computer-generated multitonal complexes ranging in bandwidth from 0.26-3.16 oct, logarithmically centered at 2000 Hz, were matched in loudness to a 2000-Hz comparison pure tone presented at 90, 70, and 30 dB SPL. The SPL of the experimental stimuli required for equal loudness was linearly related to bandwidth (in octaves) for each of the three comparison stimulus levels. In experiment 2, the loudness behavior of narrow-bandwidth stimuli within the previously reported critical band region was examined. The results indicated a linear relation similar to that obtained in experiment 1. These results are consistent with an auditory filter concept in which frequency is continuously encoded along the basilar membrane and in which loudness of complex stimuli is linearly related to area of excitation.  相似文献   

3.
SUMMARY: This study investigates the possible differences between actors' and nonactors' vocal projection strategies using acoustic and perceptual analyses. A total of 11 male actors and 10 male nonactors volunteered as subjects, reading an extended text sample in habitual, moderate, and loud levels. The samples were analyzed for sound pressure level (SPL), alpha ratio (difference between the average SPL of the 1-5kHz region and the average SPL of the 50Hz-1kHz region), fundamental frequency (F0), and long-term average spectrum (LTAS). Through LTAS, the mean frequency of the first formant (F1) range, the mean frequency of the "actor's formant," the level differences between the F1 frequency region and the F0 region (L1-L0), and the level differences between the strongest peak at 0-1kHz and that at 3-4kHz were measured. Eight voice specialists evaluated perceptually the degree of projection, loudness, and tension in the samples. The actors had a greater alpha ratio, stronger level of the "actor's formant" range, and a higher degree of perceived projection and loudness in all loudness levels. SPL, however, did not differ significantly between the actors and nonactors, and no differences were found in the mean formant frequencies ranges. The alpha ratio and the relative level of the "actor's formant" range seemed to be related to the degree of perceived loudness. From the physiological point of view, a more favorable glottal setting, providing a higher glottal closing speed, may be characteristic of these actors' projected voices. So, the projected voices, in this group of actors, were more related to the glottic source than to the resonance of the vocal tract.  相似文献   

4.
Pipe organ sounds, as judged by ear, tend to remain constant across different locations in an auditorium, yet the SPL of line spectra may vary by a maximum of 26 dB (mean 8.98 dB, s.d. 2.5), and the overall level may vary, typically, 10 to 12 dB from location to location. However, organs are designed, listened to, and regulated using the psychophysical units of loudness and timbre, and it is possible that the heard sound constancy exists at the psychophysical level. The present work recorded the sound of the C's and G's of pipe organ stops at three different locations in a church. The sound pressure levels were transformed to loudness. Similarity of loudness across the locations was measured two ways. First, the bass to treble distribution of loudness across the compass was measured using cross-correlation functions across pairs of locations. Second, the degree of similarity of loudness at the different locations was quantified by calculating ratios of loudness between the different locations. By these measures, the bass to treble loudness distribution and absolute loudness of the reeds were found to be nearly identical at the three locations. Two psychophysical processes were shown to be responsible for the loudness constancy. The first depended upon the power summation of harmonics within each third octave band above band 9 which contain two or more harmonics. The power summation of these harmonics greatly reduced the effect of SPL variability of the line spectra contained within these higher numbered bands. The second depended upon interharmonic loudness summation and upward masking of the first six harmonics. Greater loudness variability at the different locations was found after transforming the SPL measurements of two 8-ft diapasons to loudness compared with the reeds. The larger loudness variability was due to the smaller number of harmonics above the third of the diapasons compared with the reeds. The psychoacoustic measures indicate what a listener will hear as he/she moves among the locations.  相似文献   

5.
The intensity jnd is often assumed to depend on the slope of the loudness function. One way to test this assumption is to measure the jnd for a sound that falls on distinctly different loudness functions. Two such functions were generated by presenting a 1000-Hz tone in narrow-band noise (925-1080 Hz) set at 70 dB SPL and in wideband noise (75-9600 Hz) set at 80 dB SPL. Over a range from near threshold to about 75 dB SPL, the loudness function for the tone is much steeper in the narrow-band noise than in the wideband noise. At 72 dB SPL, where the two loudness curves cross, the tone's jnd was measured in each noise by a block up-down two-interval forced-choice procedure. Despite the differences in slope (and in sensation level), the jnd (delta I/I) is nearly the same in the two noises, 0.22 in narrow-band noise and 0.20 in wideband noise. The mean value of 0.21 is close to the value of 0.25 interpolated from Jesteadt et al. [J. Acoust. Soc. Am. 61, 169-176 (1977)] for a 1000-Hz tone that had the same loudness in quiet as did our 72-dB tone in noise, but lay on a loudness function with a much lower slope. These and other data demonstrate that intensity discrimination for pure tones is unrelated to the slope of the loudness function.  相似文献   

6.
The influence of the degree of envelope modulation and periodicity on the loudness and effectiveness of sounds as forward maskers was investigated. In the first experiment, listeners matched the loudness of complex tones and noise. The tones had a fundamental frequency (F0) of 62.5 or 250 Hz and were filtered into a frequency range from the 10th harmonic to 5000 Hz. The Gaussian noise was filtered in the same way. The components of the complex tones were added either in cosine phase (CPH), giving a large crest factor, or in random phase (RPH), giving a smaller crest factor. For each F0, subjects matched the loudness between all possible stimulus pairs. Six different levels of the fixed stimulus were used, ranging from about 30 dB SPL to about 80 dB SPL in 10-dB steps. Results showed that, at a given overall level, the CPH and the RPH tones were louder than the noise, and that the CPH tone was louder than the RPH tone. The difference in loudness was larger at medium than at low levels and was only slightly reduced by the addition of a noise intended to mask combination tones. The differences in loudness were slightly smaller for the higher than for the lower F0. In the second experiment, the stimuli with the lower F0s were used as forward maskers of a 20-ms sinusoid, presented at various frequencies within the spectral range of the maskers. Results showed that the CPH tone was the least effective forward masker, even though it was the loudest. The differences in effectiveness as forward maskers depended on masker level and signal frequency; in order to produce equal masking, the level of the CPH tone had to be up to 35 dB above that of the RPH tone and the noise. The implications of these results for models of loudness are discussed and a model is presented based on neural activity patterns in the auditory nerve; this predicts the general pattern of loudness matches. It is suggested that the effects observed in the experiments may have been influenced by two factors: cochlear compression and suppression.  相似文献   

7.
Phonation threshold pressure has been defined as the minimum subglottalpressure to generate phonation. Previous research has indicated that children may habitually employ higher subglottal pressures than adults. In the present investigation sound pressure level (SPL) and subglottal pressures at different pitch levels were measured at and above phonation threshold in nine children. Phonation threshold values were scattered in reasonable agreement with Titzes' prediction, although a discrepancy was noted regarding the frequency dependence in some voices. At normal conversational loudness and loudest level of phonation the children's PS values were between two to four and four to eight times the predicted threshold values, respectively. At normal conversational loudness and habitual pitch subglottal pressures were lower than those previously observed for children, but similar to those found for female adults. The SPL in softest and loudest phonation were somewhat lower as compared to previous phonetogram data for children and for female adults. At normal loudness and habitual pitch the SPL values were similar to those of female adults. For a doubling of Ps mean SPL increased by 10.5 dB on the average.  相似文献   

8.
It is well known that a tone presented binaurally is louder than the same tone presented monaurally. It is less clear how this loudness ratio changes as a function of level. The present experiment was designed to directly test the Binaural Equal-Loudness-Ratio hypothesis (BELRH), which states that the loudness ratio between equal-SPL monaural and binaural tones is independent of SPL. If true, the BELRH implies that monaural and binaural loudness functions are parallel when plotted on a log scale. Cross-modality matches between string length and loudness were used to directly measure binaural and monaural loudness functions for nine normal listeners. Stimuli were 1-kHz 200-ms tones ranging in level from 5 dB SL to 100 dB SPL. A two-way ANOVA showed significant effects of level and mode (binaural or monaural) on loudness, but no interaction between the level and mode. Consequently, no significant variations were found in the binaural-to-monaural loudness ratio across the range of levels tested. This finding supports the BELRH. In addition, the present data were found to closely match loudness functions derived from binaural level differences for equal loudness using the model proposed by Whilby et al. [J. Acoust. Soc. Am. 119, 3931-3939 (2006)].  相似文献   

9.
Voice problems are a frequent difficulty that teachers experience. Common complaints by teachers include vocal fatigue and hoarseness. One possible explanation for these symptoms is prolonged elevations in vocal loudness within the classroom. This investigation examined the effectiveness of sound-field frequency modulation (FM) amplification on reducing the sound pressure level (SPL) of the teacher's voice during classroom instruction. Specifically, SPL was examined during speech produced in a classroom lecture by 10 teachers with and without the use of sound-field amplification. Results indicated a significant 2.42-dB decrease in SPL with the use of sound-field FM amplification. These data support the use of sound-field amplification in the vocal hygiene regimen recommended to teachers by speech-language pathologists.  相似文献   

10.
Recent research on loudness has focused on contextual effects on loudness, both assimilation and recalibration. The current experiments examined loudness recalibration [Marks, J. Exp. Psychol. 20, 382-396 (1994)]. In the first experiment, an adaptive tracking procedure was used to measure loudness recalibration as a function of standard- and recalibration-tone level. The standard-tone frequencies were 500 and 2500 Hz and the levels were 80-, 70-, 60-, and 40-dB SPL, and threshold. Seventeen dB of loudness recalibration was obtained (combined over both frequencies) in the 60-dB SPL condition. This amount of loudness recalibration, while substantial, is still less than that obtained by Marks (22 dB), using the method of paired comparisons. The second experiment sought to duplicate Marks' earlier experiment [Marks, J. Exp. Psychol. 20, 382-396 (1994), experiment 2]. The results of this experiment (21 dB) were almost identical to those obtained by Marks. The results of experiment 1 indicate that loudness recalibration is maximum when the recalibration tone is moderately louder than the subsequent standard tones. Relatively little loudness recalibration is exhibited when the standard-tone level equals the recalibration-tone level. In addition, there is no loudness recalibration at threshold. The tracking procedure also identified that the onset of loudness recalibration is very rapid. The difference between the maximum loudness recalibration obtained at each frequency (11 dB at 500 Hz, 6 dB at 2500 Hz) suggests that loudness recalibration is dependent upon the frequency of the standard tone.  相似文献   

11.
Why can a decrease in dB(A) produce an increase in loudness?   总被引:2,自引:0,他引:2  
Loudness measured by the method of absolute magnitude estimation is compared to loudness calculated in accordance with ISO 532 B (International Organization for Standardization, Geneva, 1966). The measured and calculated loudness functions exhibit a similar pattern of loudness growth. Both measured and calculated loudness of a complex sound composed of a 1000-Hz tone and broadband noise is a nonmonotonic function of the overall SPL of the complex. The nonmonotonic loudness-growth pattern holds over a 30-dB range from 73.5 to 103.5. To facilitate understanding of the results, a single cycle of data is analyzed in detail. The analysis shows that loudness patterns produced in the auditory system by the tone-noise complex can account for the observed effects. Moreover, they show that the A-weighting and the loudness of the complex are negatively related. This inverse relation means that the A-weighted SPL is an inappropriate and misleading indicator of the loudness of sound combinations with heterogeneous spectral envelopes. Consequently, its suitability for noise control is diminished. A loudness meter that combines the spectral shapes of different sounds to produce an overall perceived magnitude offers greater promise.  相似文献   

12.
The present study evaluates the relation between loudness and simple reaction time (RT). Loudness matches between a narrowband noise (125 Hz wide) and a broadband noise (1500 Hz) were made at levels from near threshold to near 100 dB SPL. Over a similarly wide range of levels, RT to each of the noise bands was also measured. As reported often in previous loudness-matching studies, loudness summation depended strongly on level. With increasing SPL, the level difference between the noises needed to keep them equally loud first increased, to around 10 dB at moderate levels, and then decreased. Except for one listener, the RT data show the same pattern. The level difference needed to keep RT to the two noises the same first increased and then decreased. These results show that RT is closely related to loudness, but not to sensation level. If RT depended on sensation level, the level difference between the two noises needed to achieve equal RT would not change with SPL because the difference in sensation level between two sounds is a constant. Overall, the average results provide strong support for the contention that simple RT and loudness are closely related.  相似文献   

13.
Effects of sound level on auditory cortical activation are seen in neuroimaging data. However, factors such as the cortical response to the intense ambient scanner noise and to the bandwidth of the acoustic stimuli will both confound precise quantification and interpretation of such sound-level effects. The present study used temporally "sparse" imaging to reduce effects of scanner noise. To achieve control for stimulus bandwidth, three schemes were compared for sound-level matching across bandwidth: component level, root-mean-square power and loudness. The calculation of the loudness match was based on the model reported by Moore and Glasberg [Acta Acust. 82, 335-345 (1996)]. Ten normally hearing volunteers were scanned using functional magnetic resonance imaging (tMRI) while listening to a 300-Hz tone presented at six different sound levels between 66 and 91 dB SPL and a harmonic-complex tone (F0= 186 Hz) presented at 65 and 85 dB SPL. This range of sound levels encompassed all three bases of sound-level matching. Activation in the superior temporal gyrus, induced by each of the eight tone conditions relative to a quiet baseline condition, was quantified as to extent and magnitude. Sound level had a small, but significant, effect on the extent of activation for the pure tone, but not for the harmonic-complex tone, while it had a significant effect on the response magnitude for both types of stimulus. Response magnitude increased linearly as a function of sound level for the full range of levels for the pure tone. The harmonic-complex tone produced greater activation than the pure tone, irrespective of the matching scheme for sound level, indicating that bandwidth had a greater effect on the pattern of auditory activation than sound level. Nevertheless, when the data were collapsed across stimulus class, extent and magnitude were significantly correlated with the loudness scale (measured in phons), but not with the intensity scale (measured in SPL). We therefore recommend the loudness formula as the most appropriate basis of matching sound level to control for loudness effects when cortical responses to other stimulus attributes, such as stimulus class, are the principal concern.  相似文献   

14.
The effect of the increased flow rate (ΔU) in response to the Accent Method exercises on fundamental frequency (FO) and sound pressure level (SPL) was studied in three subjects (professionally trained, trained, and untrained in this method). In all the subjects, the rhythmic accentuated exercises produced a variable degree of increase in FO (ΔFO) and SPL (ΔSPL). The professionally trained subject showed greater ΔFO and ΔSPL in response to the ΔU in the fastest tempo, which requires higher skills. Both trained subjects showed a greater correlation between ΔU and both ΔSPL and ΔFO, as well as between ΔFO and ΔSPL, as compared to the untrained subject. The effects of the accentuated exercises on FO and SPL in response to the increased airflow rate (ΔU) thus appear to demonstrate the treating effectiveness of the Accent Method.  相似文献   

15.
Experiments were conducted to determine the extent to which listeners can discriminate between different combinations of interaural time and intensity for binaural stimulus configurations which eliminate loudness, lateralization, and image-diffuseness cues. A two-interval forced choice paradigm was used, and the task of the subject was to determine the order of two stimuli, each of which was a slowly gated 500-Hz tone with a combination of interaural time and intensity differences that resulted in a centered primary spatial image. The two stimuli to be discriminated were symmetric in that they differed only in the polarity of their interaural differences. Also, in order to reduce artifacts introduced by variations in the coupling of the earphones to the head, acoustic monitoring and compensation was performed both before and after each experimental run. The performance of the two most highly trained subjects is consistent with previous experimental results that indicate an incomplete trading of interaural time and intensity information. The subjective perceptions of these observers are not consistent with previous studies that describe a "time image" and a "time-intensity traded" spatial image.  相似文献   

16.
The ratios between the modulation index (eta) for just noticeable FM of a sinusoidally modulated pure tone and the degree of modulation (m) for just noticeable AM at the same carrier and the same modulation frequency were measured at carrier frequencies of 0.125, 0.25, 0.5, 1, 2, 4, and 8 kHz. Signal levels were 20 dB SL and 50 dB SPL or 80 dB SPL. At low modulation frequencies, for example, 8 Hz, AM and FM elicit very different auditory sensations (i.e., a fluctuation in loudness or pitch, respectively). In this case, eta and m show different values for just noticeable modulation. Since both stimuli have almost equal amplitude spectra if eta equals m (m less than 0.3), the difference in detection thresholds reflects differences in the phase relation between carrier and sidebands in AM and FM. With increasing modulation frequency, the eta-m ratio decreases and reaches unity at a modulation frequency called the "critical modulation frequency" (CMF). At modulation frequencies above the CMF, the same modulation thresholds are obtained for AM and FM. Therefore, it can be concluded that the difference in phase between the two types of stimuli is not perceived in this range. At center frequencies below 1 kHz, where phase errors caused by headphones and ear canal presumably are small, the CMF is useful in estimating critical bandwidth.  相似文献   

17.
Loudness level measurements in human listeners are straightforward; however, it is difficult to convey the concepts of loudness matching or loudness comparison to (non-human) animals. For this reason, prior studies have relied upon objective measurements, such as response latency, to estimate equal loudness contours in animals. In this study, a bottlenose dolphin was trained to perform a loudness comparison test, where the listener indicates which of two sequential tones is louder. To enable reward of the dolphin, most trials featured tones with identical or similar frequencies, but relatively large sound pressure level differences, so that the loudness relationship was known. A relatively small percentage of trials were "probe" trials, with tone pairs whose loudness relationship was not known. Responses to the probe trials were used to construct psychometric functions describing the loudness relationship between a tone at a particular frequency and sound pressure level and that of a reference tone at 10 kHz with a sound pressure level of 90, 105, or 115 dB re 1 μPa. The loudness relationships were then used to construct equal loudness contours and auditory weighting functions that can be used to predict the frequency-dependent effects of noise on odontocetes.  相似文献   

18.
Forward-masked intensity-difference limens (DLs) for pure-tone standards presented at low, medium, and high levels were obtained for a wide range of masker-standard level differences. At a standard level of 25 dB SPL, the masker had a significant effect on intensity resolution, and the data showed a mid-difference hump: The DL elevation was greater at intermediate than at large masker-standard level differences. These results support the hypothesis that the effect of a forward masker on intensity resolution is modulated by the similarity between the masker and the standard. For a given masker-standard level difference, the effect of the masker on the DL was larger for a 55-dB SPL than for the 25-dB SPL standard, providing new support for a midlevel hump. To examine whether the masker-induced DL elevations are related to masker-induced loudness changes [R. P. Carlyon and H. A. Beveridge, J. Acoust. Soc. Am. 93, 2886-2895 (1993)], the effect of the masker on target loudness was measured for the same listeners. Loudness enhancement followed a mid-difference hump pattern at both the low and the intermediate target level. The correlation between loudness changes and DL elevations was significant, but several aspects of the data are incompatible with the predicted one-on-one relation between the two effects.  相似文献   

19.
This article describes experiments carried out in order to gain a deeper understanding of the mechanisms underlying variation of vocal loudness in singers. Ten singers, two of whom are famous professional opera tenor soloists, phonated at different pitches and different loudnesses. Their voice source characteristics were analyzed by inverse filtering the oral airflow signal. It was found that the main physiological variable underlying loudness variation is subglottal pressure (Ps). The voice source property determining most of the loudness variation is the amplitude of the negative peak of the differentiated flow signal, as predicted by previous research. Increases in this amplitude are achieved by (a) increasing the pulse amplitude of the flow waveform; (b) moving the moment of vocal fold contact earlier in time, closer to the center of the pulse; and (c) skewing the pulses. The last mentioned alternative seems dependent on both Ps and the ratio between the fundamental frequency and the first formant. On the average, the singers doubled Ps when they increased fundamental frequency by one octave, and a doubling of the excess Ps over threshold caused the sound pressure level (SPL) to increase by 8–9 dB for neutral phonation, less if mode of phonation was changed to pressed. A shift of mode of phonation from flow over neutral to pressed was associated with a reduction of the peak glottal permittance i.e., the ratio between peak transglottal airflow to Ps. Flow phonation had the most favorable relationship between Ps and SPL.  相似文献   

20.
This study tests the Equal-Loudness-Ratio hypothesis [Florentine et al., J. Acoust. Soc. Am. 99, 1633-1644 (1996)], which states that the loudness ratio between equal-SPL long and short tones is independent of SPL. The amount of temporal integration (i.e., the level difference between equally loud short and long sounds) is maximal at moderate levels. Therefore, the Equal-Loudness-Ratio hypothesis predicts that the loudness function is shallower at moderate levels than at low and high levels. Equal-loudness matches and cross-modality string-length matches were used to assess the form of the loudness function for 5 and 200 ms tones at 1 kHz and the loudness ratio between them. Results from nine normal listeners show that (1) the amount of temporal integration is largest at moderate levels, in agreement with previous studies, and (2) the loudness functions are shallowest at moderate levels. For eight of the nine listeners, the loudness ratio between the 200 and 5 ms tones is approximately constant, except at low levels where it tends to increase. The average data show good agreement between the two methods, but discrepancies are apparent for some individuals. These findings support the Equal-Loudness-Ratio hypothesis, except at low levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号