首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although the pentacoordinated complex [Ir{(allyl)B(CH(2)PPh(2))(pz)(2)}(cod)] (1; pz=pyrazolyl, cod=1,5-cyclooctadiene), isolated from the reaction of [{Ir(mu-Cl)(cod)}(2)] with [Li(tmen)][B(allyl)(CH(2)PPh(2))- (pz)(2)] (tmen=N,N,N',N'-tetramethylethane-1,2-diamine), shows behavior similar to that of the related hydridotris(pyrazolyl)borate complex, the carbonyl derivatives behave in a quite different way. On carbonylation of 1, the metal--metal-bonded complex [(Ir{(allyl)B(CH(2)PPh(2))(pz)(2)}CO)(2)(mu-CO)] (2) that results has a single ketonic carbonyl bridge. This bridging carbonyl is labile such that upon treatment of 2 with PMe(3) the pentacoordinated Ir(I) complex [Ir(CO){(pz)B(eta(2)-CH(2)CH=CH(2))(CH(2)PPh(2))(pz)}(PMe(3))] (3) was isolated. Complex 3 shows a unique fac coordination of the hybrid ligand with the allyl group eta(2)-bonded to the metal in the equatorial plane of a distorted trigonal bipyramid with one pyrazolate group remaining uncoordinated. This unusual feature can be rationalized on the basis of the electron-rich nature of the metal center. The related complex [Ir(CO){(pz)B(eta(2)-CH(2)CH=CH(2))(CH(2)PPh(2))(pz)}(PPh(3))] (4) was found to exist in solution as a temperature-dependent equilibrium between the cis-pentacoordinated and trans square planar isomers with respect to the phosphorus donor atoms. Protonation of 3 with different acids is selective at the iridium center and gives the cationic hydrides [Ir{(allyl)B(CH(2)PPh(2))(pz)(2)}(CO)H(PMe(3))]X (X=BF(4) (5), MeCO(2) (6), and Cl (7)). Complex 7 further reacts with HCl to generate the unexpected product [Ir(CO)Cl{(Hpz)B(CH(2)PPh(2))(pz)CH(2)CH(Me)}(PMe(3))]Cl (9; Hpz=protonated pyrazolyl group) formed by the insertion of the hydride into the Ir-(eta(2)-allyl) bond. In contrast, protonation of complex 4 with HCl stops at the hydrido complex [Ir{(allyl)B(CH(2)PPh(2))(pz)(2)}(CO)H(PPh(3))]Cl (8). X-ray diffraction studies carried out on complexes 2, 3, and 9 show the versatility of the hybrid scorpionate ligand in its coordination.  相似文献   

2.
The synthesis of a novel hybrid pyrazolate/phosphine anionic ligand [CH2=CHCH2B(CH2PPh2)(pz)2]- is described. Coordination of this ligand to metals in a fac tridentate fashion occurs in the complexes [CH2=CHCH2B(CH2PPh2)(pz)2M(cod)], prepared by reactions of the lithium salt of the ligand with [M(mu-Cl)(cod)]2 (M=Rh, Ir). They are pentacoordinated, with the rhodium complex showing a distorted trigonal-bipyramidal structure in the solid state, as determined by X-ray diffraction methods. Furthermore, the ligand has been linked to the periphery of a carbosilane dendrimer, resulting in the polyanionic dendrimer [Li(TMED)]4[Si{(CH2)3SiMe2(CH2)3B(CH2PPh2)(pz)2}4], which leads further to the corresponding metallodendrimer with four rhodium atoms.  相似文献   

3.
Two fluorenyl/tris(pyrazol-1-yl)borate hybrid ligands, FlBpz3Li and FlB(pz3-tBu)3Li, have been synthesized and structurally characterized by X-ray crystallography (Fl: 9-fluorenyl; pz: pyrazolyl). From the reaction of FlBpz3Li and ZnCl2 in THF, the dinuclear complex (THF)3Lipz(Fl)Bpz2ZnCl2 was obtained in which a ZnCl2 moiety is chelated by two pyrazolyl ligands while the third pz ring coordinates to an Li(THF)3 fragment. Acetonitrile solutions of the compound gradually transform into the mononuclear species Fl(pz)Bpz2Znpz2B(pz)Fl featuring a distorted tetrahedral ZnN4 core. In all molecular structures of [FlBpz3] or [FlB(pz3-tBu)3] complexes investigated so far, the hybrid ligands adopt very similar conformations with only two pyrazolyl rings bonded to the central metal, whereas the third pyrazolyl acts as dangling substituent. The fluorenyl substituent of FlBpz3Li may be deprotonated with KH in quantitative yield.  相似文献   

4.
A novel ruthenium-mediated coupling reaction of a carboranyl with a cyclopentadienyl was discovered for the first time, leading to a brand new doubly-bridged cyclopentadienyl-carboranyl ligand bearing two five-membered rings and to a new type of chiral ruthenium complex.  相似文献   

5.
An improved synthesis of lithium phenyltris(methimazolyl)borate, Li[PhTm(Me)], (methimazole = 1-methylimidazole-2-thione) is described, and the structure of the methanol-solvated [Li(OHMe)4][PhTm(Me)] has been determined. The syntheses and characterization of complexes [M(PhTm(Me))(PR3)] (M = Cu, Ag, Au; R = Et, Ph;) are reported, and the complexes [Cu(PhTm(Me))(PPh3)], [Ag(PhTm(Me))(PEt3)] and [Au(PhTm(Me))(PEt3)] are crystallographically characterized, showing a progression from pseudo-tetrahedral geometry (copper, S3P coordination) to trigonal planar geometry (silver, S2P coordination) to linear geometry (gold, SP coordination). In addition, the copper(I) and silver(I) triphenylphosphine complexes of the adventitiously formed phenylhydrobis(methimazolyl)borate ligand, [M(PhBm(Me))(PPh3)], have been crystallographically characterized, showing both species to have a trigonal planar primary coordination sphere, with a secondary M...H-B interaction. Finally, reaction of copper(II) chloride with Li[PhTm(Me)] results in formation of a compound analyzing as [Cu(II)(PhTm(Me))Cl], although its extreme insolubility and marked instability have precluded its complete characterization. Attempts to prepare this by ultra-slow diffusion of the reactants through solvent blanks has led to isolation of a mixed-valence copper(I/II) methimazolate cluster, [Cu(I)10Cu(II)2(mt)12Cl2] and a copper(I) dimeric complex [Cu2(PhTm(Me))2], indicating that copper(II) ions oxidatively decompose the phenyltris(methimazolyl)borate anion.  相似文献   

6.
Reaction of potassium tris(mercapto-tert-butylpyridazinyl)borate K[Tn(tBu)] with copper(II) chloride in dichloromethane at room temperature led to the diamagnetic copper boratrane compound [Cu{B(Pn(tBu))(3)}Cl] (Pn = pyridazine-3-thionyl) (1) under activation of the B-H bond and formation of a Cu-B dative bond. In contrast to this, stirring of the same ligand with copper(I) chloride in tetrahydrofuran (THF) gave the dimeric compound [Cu{Tn(tBu)}](2) (2) where one copper atom is coordinated by two sulfur atoms and one hydrogen atom of one ligand and one sulfur of the other ligand. Hereby, no activation of the B-H bond occurred but a 3-center-2-electron B-H···Cu bond is formed. The reaction of copper(II) chloride with K[Tn(tBu)] in water gave the same product 2, but a formal reduction of the metal center from Cu(II) to Cu(I) occurred. When adding tricyclohexyl phosphine to the reaction mixture of K[Tn(R)] (R = tBu, Me) and copper(I) chloride in MeOH, the distorted tetrahedral Cu complexes [Cu{Tn(R)}(PCy(3))] (R = tBu 3, Me 4) were formed. Compound 4 is exhibiting an "inverted" κ(3)-H,S,S, coordination mode. The copper boratrane 1 was further investigated by density functional theory (DFT) calculations for a better understanding of the M→B interaction involving the d(8) electron configuration of Cu.  相似文献   

7.
We report a family of organometallic rare-earth complexes with the general formula (COT)M(Cpttt) (where (COT)2− = cyclooctatetraenide, (Cpttt) = 1,2,4-tri(tert-butyl)cyclopentadienide, M = Y(iii), Nd(iii), Dy(iii) and Er(iii)). Similarly to the prototypical Er(iii) analog featuring pentamethylcyclopentadienyl ligand (Cp*), (COT)Er(Cpttt) behaves as a single-ion magnet. However, the introduction of the sterically demanding (Cpttt) imposes geometric constraints that lead to a simplified magnetic relaxation behavior compared to the (Cp*) containing complexes. Consequently, (COT)Er(Cpttt) can be viewed as a model representative of this organometallic single-ion magnet architecture. In addition, we demonstrate that the increased steric profile associated with the (Cpttt) ligand permits preparation, structural characterization and interrogation of magnetic properties of the early-lanthanide complex, (COT)Nd(Cpttt). Such a mononuclear derivative could not be obtained when a (Cp*) ligand was employed, a testament to larger ionic radius of this early lanthanide ion.

Application of steric control principles allows for simplification of the magnetic behavior of an iconic single-ion magnet architecture as well as the preparation of its previously inaccessible representative.  相似文献   

8.
The aqueous solution chemistry of niobium is rather unexplored, and well characterized aqua complexes are scarce. In this work, a new niobium aqua ion is obtained upon treatment of Zn-reduced ethanolic solutions of NbCl5 with HCl in the presence of a sulfide source. The red aqua ion, obtained upon cation-exchange chromatography, forms readily the thiocyanate complex which has been crystallized as Cs(4.26)Na(1.74)[Nb4SO5(NCS)10] . 0.33H2O. X-ray crystallography revealed an unprecedented metal-metal bonded tetranuclear Nb4(mu4-S)(mu2-O)5(4+) core with a capping mu4-S ligand.  相似文献   

9.
10.
11.
A simple new route to access heterometallic alkoxo precursors for a wide range of materials is reported. This unique synthetic method comprises elimination of the cyclopentadienyl ring from Cp2MCl2 (M = Ti, Zr) as CpH in the presence of M'(OR)2 (M' = Ca, Mn; OR = OCH2CH2OCH3 or OEt) in an alcohol as a source of protons. In one-pot reactions, we have prepared four different compounds with Ti2Ca4(mu6-O), Cp2Zr2Ca4(mu4-Cl), Zr10Mn10(mu3-O) 14, and Cp3Ti2(mu-OEt)2 motifs. The compounds were characterized by single-crystal X-ray structural analysis and NMR spectroscopy.  相似文献   

12.
Hydrotris(3-phenyl-5-methylpyrazoyl)boratonickel(II) complexes with organoxanthate or dithiocarbamate coligands equilibrate between kappa(2)- and kappa(3)-chelation modes of the scorpionate ligand in solution, connecting N2S2 square-planar and N3S2 pyramidal ligand fields and a spin crossover. The complexes also exhibit quasi-reversible oxidations at low anodic potentials, thus modeling the structure, dynamics, and redox reactivity of the reduced NiSOD active site.  相似文献   

13.
14.
Two families of planar chiral ferrocenyl cyclopentadienyl chelate ligands for use in ansa-half sandwich metallocene complexes of catalytically active transition metals are described. The first family was derived in 4–5 steps from an enzymatic resolution of 1-iodo-2-(methylalcohol)ferrocene and possesses a cyclopentadiene derivative [Cp(H) = 1-indenyl, 2-indenyl or Ph4Cp(H)] directly attached to the ferrocene ring with an adjacent vicinal tether CH2Z donor group (Z = OH, OMe, NHMe, NMe2 or PPh2). The second family was derived from a chiral auxiliary approach and has the donor group (Z = PPh2 or NMe2) attached directly to the ferrocene ring with an adjacent tether vicinal CH2Cp(H) group [Cp(H) = Cp(H), fluorenyl, 1-indenyl, Me4Cp(H) or Ph4Cp(H)].  相似文献   

15.
Double C-C bond cleavage of a cyclopentadienyl ligand proceeded to titanacyclopentadienes when 2 equiv of nitriles were added and the resulting two-carbon unit and three-carbon unit were converted into a benzene derivative and a pyridine derivative, respectively, in one-pot.  相似文献   

16.
17.
A ruthenium(II) complex containing a 1,10-phenanthroline unit and a terpyridine fragment covalently linked to a benzonitrile group has been synthesised; coordination and decoordination of the benzonitrile group can be induced thermally and photochemically respectively, in an acetone-water mixture.  相似文献   

18.
Reaction of hybrid scorpionate/cyclopentadienyl ligands in the form of the lithium derivatives [Li(bpzcp)(THF)] [bpzcp=2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethylcyclopentadienyl], [Li(bpztcp)(THF)] [bpztcp=2,2-bis(3,5-dimethylpyrazol-1-yl)-1-tert-butylethylcyclopentadienyl], and the in situ-generated "Li(bpzpcp)" [bpzpcp=2,2-bis(3,5-dimethylpyrazol-1-yl)-1-phenylethylcyclopentadienyl] with MCl3(THF)3 afforded the group 3 halide compounds [MCl2(bpzcp)(THF)] (M=Sc, 1; Y, 2), [MCl2(bpztcp)(THF)] (M=Sc, 3; Y, 4), and [MCl2(bpzpcp)(THF)] (M=Sc, 5; Y, 6). The H2O adduct of 4, [YCl2(bpztcp)(H2O)] (7), was formed when a solution of 4 was allowed to stand at room temperature in the presence of moisture. Complexes 1-7 adopt a pseudo-octahedral structure with heteroscorpionate ligands kappa2-NNeta5-Cp coordinated to the metal through the cyclopentadienyl group and two imino nitrogens of pyrazole rings. The alkyl heteroscorpionate scandium and yttrium complexes recently reported by our group, [M(CH2SiMe3)2(bpzcp)], react with 2,6-dimethylphenol and 3,5-dimethylphenol to give the bis(aryloxide) derivatives [M(OAr)2(bpzcp)] (M=Sc, OAr=2,6-dimethylphenoxide, 8; M=Y, OAr=2,6-dimethylphenoxide, 9; M=Y, OAr=3,5-dimethylphenoxide, 10). Complex 9 underwent an interesting hydrolysis process to give the tetranuclear complex [{Y(bpzcp)}(micro-OH)2(micro3-OH){Y(OAr)2}]2 (11). Variable-temperature 1H NMR experiments on 9 and 10 revealed a rapid fluxional exchange between coordinated and noncoordinated pyrazolyl rings, producing interconversion between the two enantiomers in which the scorpionate ligand can be coordinated in a kappa1-Neta5-Cp form. The structures of the complexes were determined by spectroscopic methods and the X-ray crystal structures of 2, 7, and 11 were also established. Complexes 1 and 2 are active olefin polymerization catalysts after activation with methylaluminoxane. These compounds gave atactic polystyrenes with narrow molecular weight distribution (Mn/Mw 1.26-1.91) and with low molecular weights.  相似文献   

19.
Irradition of benzene solutions of zirconocene dichloride and zirconocene- d10 dichloride with 313 nm light leads to the formation of zirconocene-d5 dichloride with a quantum yield of 0.021 mol/Ei. The equilibrium constant is 2.8 Zirconocene dichloride exchanges a cyclopentadienyl ligand photolytically with bis(methylcyclopentadienyl)zirconium dichloride with the constant equal to 2.3.  相似文献   

20.
The reaction of the divalent ruthenium complexes [CpFRuCl]n and [CpFRu(MeCN)3]PF6 with substituted pentafulvenes 1,2-(Me2NCH)(CO2Et)C5H3 and 1,3-(Me2NCH)(CO2Et)- C5H3 followed by hydrolysis affords new homoannular disubstituted ruthenocenes {1,2- (CO2Et)(CHO)C5H3}RuCpF and {1,3-(CO2Et)(CHO)C5H3}RuCpF (CpF = C5Me4CF3), re- spectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号