首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel composite superionic system, [Ag2HgI4:0.2AgI]:xCuI, (x = 0.2, 0.4, 0.6 mol. wt.%), was prepared and [Ag2HgI4:0.2AgI] mixed system was used as the host. Electrical conductivity was measured to study the transition behavior at frequencies of 100 Hz, 120 Hz, 1 kHz, and 10 kHz in the temperature range 90°–170°C by a Gen Rad 1659 RLC Digibridge. Sharp increase in conductivity was observed for β-α phase transitions. As a result of increase in the dopant-to-host ratio, the conductivity of the system exhibited Arrhenius (thermally activated)-type behavior. X-ray powder diffraction, differential scanning calorimetry (DSC), differential thermal analysis (DTA) and thermo-gravimetric analysis (TGA) studies confirmed the doping effect on the transition in the host, the phase transition temperature increased with an increase in the dopant concentration. Activation energies for the system in eV both for the pretransition and post-transition phase transformations are reported. The addition of CuI to [Ag2HgI4:0.2AgI] shifted the phase transition of the host [Ag2HgI4:0.2AgI], due to an interaction between [Ag2HgI4:0.2AgI] and CuI.  相似文献   

2.
Al2O3-Cr2O3 solid solutions with 0, 4, 7, 10 and 20 mol% of corundum were synthesized using a high-pressure/high-temperature apparatus and characterized by X-ray powder diffraction. Calorimetric measurements were carried out using DSC-111 (Setaram). Heat capacity was measured by the enthalpy method in a temperature range of 260–340 K, near magnetic phase transition in pure Cr2O3 (305 K). Magnetic contribution into the heat capacity was derived and found to change irregularly with the composition.  相似文献   

3.
Sr0.8La0.2Zn0.2Fe11.8O19/poly(vinyl pyrrolidone) (PVP) composite fiber precursors were prepared by the sol–gel assisted electrospinning. Subsequently, the M-type ferrite Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers with diameters about 120 nm were obtained by calcination of these precursors at different heat treatment conditions. The precursor and resultant Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometer and vibrating sample magnetometer. With the calcination temperature increased up to 1,000 °C for 2 h or the holding time prolonged to 12 h at 900 °C, the Sr0.8La0.2Zn0.2Fe11.8O19 particles gradually grow into a hexagonal elongated plate-like morphology due to the dimensional control along the nanofiber length. These elongated plate-like particles will be linked one by one to form the nanofiber with a necklace-like morphology. The magnetic properties of the Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers are closely related to grain sizes, impurities and defects in the ferrite, which are influenced by the calcination temperature, holding time and heating rate. After calcined at 900 °C for 12 h with a heating rate of 3 °C/min, the optimized magnetic properties are achieved with the specific saturation magnetization 75.0 A m2 kg−1 and coercivity 426.3 kA m−1 for the Sr0.8La0.2Zn0.2Fe11.8O19 nanofibers.  相似文献   

4.
Summary Structural phase transitions upon the application of high pressure in LaGaO3 and LaCrO3, which were prospected from diffraction and thermal analyses of phase transition under ambient pressure, were discovered by using high-pressure X-ray diffraction. It was revealed that the crystal structures of LaCrO3 and LaGaO3 changed completely from that of orthorhombic distorted perovskite to that of a rhombohedral distorted one upon the application of pressure higher than 5.4 and 3.0 GPa, respectively, at room temperature. The variation of lattice constants with pressure was investigated for the high-pressure rhombohedral phases of LaCrO3 and LaGaO3 and isothermal compressibility was estimated. The variation of lattice constants with pressure at room temperature in the high-pressure rhombohedral phase was compared with that with temperature at ambient pressure in high-temperature rhombohedral phase. It was found that the application of pressure decreased the crystal symmetry, which was opposite to the result in the case of increasing the temperature.  相似文献   

5.
X-ray diffraction (XRD) and differential thermal analysis (DTA) methods are used to analyze tetramethylammonium hexafluoridozirconate of the composition [N(CH3)4]2ZrF6. In the temperature range between 96-110 °C, the crystals undergo a reversible phase transition from the low-temperature trigonal modification (space group R3 ) to the high-temperature cubic modification (space group Fm3m). The cubic phase is composed of regular [ZrF6]2–octahedral and tetrahedral (CH3)4N+ cations linked by ionic interactions and the С–H???F hydrogen bonds.  相似文献   

6.
Cobalt zinc ferrite, Co0.8Zn0.2Fe2O4, nanoparticles have been synthesized via autocatalytic decomposition of the precursor, cobalt zinc ferrous fumarato hydrazinate. The X-ray powder diffraction of the ‘as prepared’ oxide confirms the formation of single phase nanocrystalline cobalt zinc ferrite nanoparticles. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has been determined as Co0.8Zn0.2Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ‘as-prepared oxide’ was determined by AC susceptibility measurements.  相似文献   

7.
A powdery material Mg(Fe0.8Ga0.2)2O4 has been prepared by combusting a gel containing magnesium(II), iron(III), and gallium(III) nitrates and a glycine–starch mixture. The gel produced during the synthesis has been studied by thermal analysis (TGA/DSC) and IR spectroscopy. This mixture has been shown to be efficient to produce a homogeneous nanosized powderlike material Mg(Fe0.8Ga0.2)2O4. The morphology and properties of ceramic samples are characterized by scanning electron microscopy, X-ray powder diffraction, neutron diffraction, and vibrational magnetometry.  相似文献   

8.
Thick film of nanocrystalline Co0.8Ni0.2Fe2O4 was obtained by sol–gel citrate method for gas sensing application. The synthesized powder was characterized by X-ray diffraction (XRD) and transmission electron microscopy. The XRD pattern shows spinel type structure of Co0.8Ni0.2Fe2O4. XRD of Co0.8Ni0.2Fe2O4 revels formation of solid solution with average grain size of about 30 nm. From gas sensing properties it observed that nickel doping improves the sensor response and selectivity towards ammonia gas and very low response to LPG, CO, and H2S at 280 °C. Furthermore, incorporation of Pd improves the sensor response and stability of ammonia gas and reduced the operating temperature upto 210 °C. The sensor is a promising candidate for practical detector of ammonia.  相似文献   

9.
The polycrystalline ferroelectric compounds of general formula Pb1−X Ba X TiO3 with X = 0.00, 0.1, 0.2 and 0.5 were prepared by high temperature solid-state reaction technique using high purity oxides and carbonates. The compounds formation was confirmed by X-ray diffraction and all the X-ray peaks were indexed with tetragonal structure of space group P4mm. Morphology and particle size of the compounds were obtained using scanning electron microscopy. Ferroelectric phase transition, enthalpy change, and specific heat of the compounds were obtained using modulated differential scanning calorimetry. It was observed that the phase transition temperature decreased linearly with the increase of substitution concentration.  相似文献   

10.
With the use of in situ high-temperature X-ray diffraction and thermogravimetry, the processes that occur during the heating of LnBaCuFeO5 + δ (Ln = La, Pr, Gd) and LaBa0.75Sr0.25CuFeO5 + δ ferrocuprates in air in the range 293–1273 K have been studied. For lanthanum and praseodymium ferrocuprates, expansion anomaly was discovered due to the disorder of their oxygen sublattice and oxygen elimination to the gas phase. The thermal and chemical expansions of the phases have been separated.  相似文献   

11.
Chromium doped spinels LiCrYMn2−YO4 (0.2≤Y≤0.8) has been synthesized by the sucrose-aided combustion procedure. The thermal behaviour, phase homogeneity and structural characteristics of the samples were studied by thermal analysis, coupled mass spectrometry, and room-and high-temperature X-ray diffraction methods. It was found that the ‘as prepared’ samples contained residual organic impurities undetectable for X-ray diffraction, that burn out completely at 400°C. Samples treated between 400 and 750°C are single phase spinels, whose crystallites size increase from 10 to 50 nm on increasing the temperature. Cr-doping enhances the thermal stability of the spinels, which augments on increasing the Cr content Y. The enhanced thermal stability of the spinels has been accounted for based on the high excess stabilization energy of Cr3+ in octahedral ligand field.  相似文献   

12.
A 20% GdO1.5 doped ceria solid solution with a small amount of MnO2 doping (≤5% molar ratio) was prepared via the mixed oxide method from high-purity commercial powders with grain size around 0.2–0.5 μm. X-ray diffraction analysis indicated that all the samples exhibited the fluorite structure, and no new phase was found. The data from dilatometeric measurements and scanning electron microscopy observations revealed that 1% Mn doping reduced the sintering temperature by over 150 °C, and enhanced the densification and grain growth. Mn doping has little effect on grain interior conductivity, but a marked deterioration in grain boundary behavior is observed. This leads to a lower total conductivity in comparison with the undoped Ce0.8Gd0.2O2–δ. Therefore, for solid oxide fuel cells (SOFCs) with Mn-containing compounds as electrodes, optimization of electrode fabrication conditions is needed to prevent the formation of a lower conductivity layer at the electrode/electrolyte interface since Mn will diffuse from the electrode side to the electrolyte during fabrication and operation of SOFCs. Electronic Publication  相似文献   

13.
Nano-crystalline La0.8Sr0.2Co0.5Fe0.5O3±δ powder has been successfully synthesized by microwave assisted sol–gel (MWSG) method. The decomposition and crystallization behavior of the gel-precursor was studied by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis. From the result of FT-IR and X-ray diffraction patterns, it is found that a perovskite La0.8Sr0.2Co0.5Fe0.5O3±δ was formed by irradiating the precursor at 700 W for 3 min, but the well-crystalline perovskite La0.8Sr0.2Co0.5Fe0.5O3±δ was obtained at 700 W for 35 min. Morphological and specific area analysis of the powder were done by transmission electron microscopy (TEM), scanning electron microscope (SEM) and Brunauer–Emmett–Teller (BET). The surface areas measured was 38.9 m2/g and the grain size was ∼23 nm. Electrochemical properties of pure LSCF cathode on YSZ electrolyte at intermediate temperatures were investigated by using AC impedance analyzer, which shows a low area specific resistance (0.077 Ω cm2 at 1073 K and 0.672 Ω cm2 at 953 K). Moreover, the synthesis period of 20 h usually observed for conventional heating mode is reduced to a few minutes. Thus, the MWSG method is proved to be a novel, extremely facile, time-saving and energy-efficient route to synthesize LSCF powders.  相似文献   

14.
The previously unknown effect of emergence of an associated non-autonomous phase upon heating of zinc pyrovanadate Zn2V2O7 within the region of negative volume expansion is detected. Comparison of the data of high-temperature X-ray diffraction of the Zn2V2O7 samples synthesized via solution and solid-phase routes shows that the grain size affects the stabilization of the non-autonomous phase. The presence of a non-autonomous phase results in self-dispersion of the substance upon phase transition in heating–cooling cycles.  相似文献   

15.
The successful inkjet printing of a cerium gadolinium oxide (Ce0.8Gd0.2O2) precursor solution on highly textured Ni-5%W is reported. A stable ink was synthesised from metal acetates and propionic acid with rheological properties suitable for inkjet printing and also the development of solid–liquid interface comparable with thin film formation by dip coating. Two different drop-on-demand print heads were used for deposition: a 16-nozzle piezoelectric cartridge and a single electromagnetic nozzle. Two different rastering patterns with different droplet sizes and spacing were compared. Thermogravimetry and X-ray diffractometry were used to study the thermal decomposition of the metal oxide precursors and to determine the shortest possible heat treatment of the deposited layers, potentially suitable for continuous large scale production. The results from X-ray diffraction show that the single phase Ce0.8Gd0.2O2 was obtained in all cases, but only piezoelectric inkjet printing with optimised drop overlapping produces a highly textured buffer layer. Optical micrographs and atomic force microscopy also indicate the good quality of deposited films after heat treatment.  相似文献   

16.
Selective catalytic reduction (SCR) with ammonia has been considered as the most promising technology, as its effect deals with the NOX. Novel Fe-doped V2O5/TiO2 catalysts were prepared by sol–gel and impregnation methods. The effects of iron content and reaction temperature on the catalyst SCR reaction activity were explored by a test device, the results of which revealed that catalysts could exhibit the best catalytic activity when the iron mass ratio was 0.05%. It further proved that the VTiFe (0.05%) catalyst performed the best in denitration and its NOX conversion reached 99.5% at 270 °C. The outcome of experimental procedures: Brunauer–Emmett–Teller surface area, X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction and adsorption (H2-TPR, NH3-TPD) techniques showed that the iron existed in the form of Fe3+ and Fe2+ and the superior catalytic performance was attributed to the highly dispersed active species, lots of surface acid sites and absorbed oxygen. The modified Fe-doped catalysts do not only have terrific SCR activities, but also a rather broad range of active temperature which also enhances the resistance to SO2 and H2O.  相似文献   

17.
Summary Thermodynamic properties of a layered perovskite oxide Gd2SrCo2O7 have been studied. Powder X-ray diffraction, electric resistivity, magnetic susceptibility and heat capacity measurements were carried out. The crystal structure was determined as I4/mmm. The temperature dependence of the magnetic susceptibility was fitted to the Curie-Weiss behavior with antiferromagnetic interaction. Spin state of Co3+ ion was derived to be intermediate spin state configuration (t2g5eg1). The spin ordering was observed as a broad anomaly in the heat capacity curve with a peak at 2 K. The measured entropy was 35.47 J K-1mol-1, which was 65% of expected value. Thus the spin ordering should not be completed at the lowest temperature 0.2 K covered in the present experiments and/or some short range ordering remains at higher temperatures.  相似文献   

18.
LiNi0.8Co0.2O2 and Ca-doped LiNi0.8Co0.2O2 cathode materials have been synthesized via a rheological phase reaction method. X-ray diffraction studies show that the Ca-doped material, and also the discharged electrode, maintains a hexagonal structure even when cycled in the range of 3.0–4.35 V (vs Li+/Li) after 100 cycles. Electrochemical tests show that Ca doping significantly improves the reversible capacity and cyclability. The improvement is attributed to the formation of defects caused by the partial occupancy of Ca2+ ions in lithium lattice sites, which reduce the resistance and thus improve the electrochemical properties.  相似文献   

19.
Ce2Sn2O7 pyrochlore was synthesized by a hydrothermal method. X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the composition and valence state of the sample. The oxygen exchange property of the Ce2Sn2O7 phase was measured by an oxidation reaction in sealed air atmosphere and a followed reduction reaction in 5% H2-95% N2 atmosphere. Gas chromatography (GC) was used to analyze the oxygen change in the reaction. The results show that Ce2Sn2O7 sample has excellent oxygen absorption capacity at 250°C as Ce3+ ions are oxidized to Ce4+ ions. The oxidized sample can be reduced by 5% H2-95% N2. The refreshed sample remains the capacity of oxygen absorption, while the oxygen exchange capacity degrades with the reduction times.  相似文献   

20.
MgFe2O4 (Mg-ferrite) nanoparticles encapsulated in amorphous SiO2 were prepared by the wet chemical method. The particle sizes were estimated, based on the X-ray diffraction peaks, to be between 3 and 8 nm, depending on the annealing temperature. The particle size increased as the annealing temperature increased. From the magnetization measurements, the blocking temperature, T b, was found to be between 30 and 60 K. The magnetization values varied with the annealing or quenching conditions. To clarify the process of crystal growth, thermogravimetric and differential thermal analysis (TG-DTA) measurements were performed and the results were compared with the X-ray diffraction patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号