首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The density functionals B3LYP, B3PW91, BMK, HSE06, LC-ωPBE, M05, M06, O3LYP, TPSS, ω-B97X, and ω-B97XD are used to optimize key transition states and intermediates for ethylene addition to Ni(edt)(2) (edt = S(2)C(2)H(2)). The efficacy of the basis sets 6-31G**, 6-31++G**, cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ is also examined. The geometric parameters optimized with different basis sets and density functionals are similar and agree well with experimental values. The ω-B97XD functional gives relative energies closest to those from CCSD, while M06 and HSE06 yield results close to those from CCSD(T). CASSCF and CASSCF-PT2 calculation results are also given. Variation of the relative energies from different density functionals appears to arise, in part, from the multireference character of this system, as confirmed by the T1 diagnostic and CASSCF calculations.  相似文献   

2.
Deferiprone and other 3-hydroxy-4-pyridinones are used in metal chelation therapy of iron overload. To investigate the structure and stability of these compounds in the natural aqueous environment, ferric complexes of deferiprone and amino acid maltol conjugates were synthesized and studied by computational and optical spectroscopic methods. The complexation caused characteristic intensity changes, a 300× overall enhancement of the Raman spectrum, and minor changes in UV-vis absorption. The spectra were interpreted on the basis of density functional theory (DFT) calculations. The CAM-B3LYP and ωB97XD functionals with CPCM solvent model were found to be the most suitable for simulations of the UV-vis spectra, whereas B3LYP, B3LYPD, B3PW91, M05-2X, M06, LC-BLYP, ωB97XD, and CAM-B3LYP functionals were all useful for simulation of the Raman scattering. Characteristic Raman band frequencies for 3-hydroxy-4-pyridinones were assigned to molecular vibrations. The computed conformer energies consistently suggest the presence of another isomer of the deferiprone-ferric complex in solution, in addition to that found previously by X-ray crystallography. However, the UV-vis and Raman spectra of the two species are similar and could not be resolved. In comparison to UV-vis, the Raman spectra and their combination with calculations appear more promising for future studies of iron sequestrating drugs and artificial metalloproteins as they are more sensitive to structural details.  相似文献   

3.
Corannulene dimers made up of corannulene monomers with different curvature and substituents were studied using M06-2X, B97D and ωB97XD functionals and 6-31+G* basis set. Corannulene molecules were substituted with five alternating Br, Cl, CH(3), C(2)H or CN units. Geometric results showed that substituents gave rise to small changes in the curvature of corannulene bowls. So, there was not a clear relationship between the curvature of bowls and the changes on interaction energy generated by addition of substituents in the bowl. Electron withdrawing substituents gave rise to a more positive molecular electrostatic potential (MEP) of the bowl, which was able to get a strong interaction with the negative MEP at the surface of a fullerene. Substitution with CN caused the largest effect, giving rise to the most positive MEP and to a large interaction energy of -24.64 kcal mol(-1), at the ωB97XD/6-31+G* level. Dispersive effects must be taken into account to explain the catching ability of the different substituted corannulenes. For unsubstituted dimers, calculations with DFT-D methods employing ωB97XD and B97D functionals led to similar results to those previously reported at the SCS-MP2/cc-pVTZ level for corannulene dimers (A. Sygula and S. Saeb?, Int. J. Quant. Chem., 2009, 109, 65). In particular, the ωB97XD functional led to a difference of only 0.35 kcal mol(-1), regarding MP2 interaction energy for corannulene dimers. On the other hand, the M06-2X functional showed a general considerable underestimation of interaction energies. This functional worked quite well to study trends, but not to obtain absolute interaction energies.  相似文献   

4.
A comparison of the performance of various density functional methods including long‐range corrected and dispersion corrected methods [MPW1PW91, B3LYP, B3PW91, B97‐D, B1B95, MPWB1K, M06‐2X, SVWN5, ωB97XD, long‐range correction (LC)‐ωPBE, and CAM‐B3LYP using 6‐31+G(d,p) basis set] in the study of CH···π, OH···π, and NH···π interactions were done using weak complexes of neutral (A) and cationic (A+) forms of alanine with benzene by taking the Møller–Plesset (MP2)/6‐31+G(d,p) results as the reference. Further, the binding energies of the neutral alanine–benzene complexes were assessed at coupled cluster (CCSD)/6‐31G(d,p) method. Analysis of the molecular geometries and interaction energies at density functional theory (DFT), MP2, CCSD methods and CCSD(T) single point level reveal that MP2 is the best overall performer for noncovalent interactions giving accuracy close to CCSD method. MPWB1K fared better in interaction energy calculations than other DFT methods. In the case of M06‐2X, SVWN5, and the dispersion corrected B97‐D, the interaction energies are significantly overrated for neutral systems compared to other methods. However, for cationic systems, B97‐D yields structures and interaction energies similar to MP2 and MPWB1K methods. Among the long‐range corrected methods, LC‐ωPBE and CAM‐B3LYP methods show close agreement with MP2 values while ωB97XD energies are notably higher than MP2 values. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

5.
The performance of ten density functionals and four force field methods in describing non-covalent interactions have been assessed by studying the interaction energies and structures of the four anion–π complexes involving tetraoxacalix[2]arene[2]triazine and various anions. Their structures are optimized at MP2/6-311++G(d,p) level, and interaction energies are obtained at DF-MP2-F12/aug-cc-pVDZ level. The result shows that the functional M06-2X predicts the most reliable interaction energy, followed by wB97XD and BHandH. B97D slightly overestimates the interaction energy. Other functionals and force field methods seriously overestimate the interaction energy. For the structures, three functionals M06-2X, wB97XD and BH and H predict the most reliable results, followed by B97D. The force field methods predict the largest deviations. The present work suggests that the functional M06-2X is a reliable method to describe energies and structural properties of the large molecules involving the anion–π interactions.  相似文献   

6.
The conformational structure and electronic spectra properties of a series of bay substituted perylenediimides (PDI) derivatives have been investigated by means of density functional theory (DFT) and time‐dependent DFT. The B3LYP and PBE0 hybrid exchange‐correlation functionals were applied in conjunction with the double‐ζ quality SVP basis set. These compounds are interesting for organic materials science and as photosensitizers in cancer phototherapy (PDT), because of their intense absorption in the visible region. Results show that the substitution at the bay position of the PDI parent molecule with N‐alkyl groups shifts the absorption maxima towards the red part of the visible spectrum (around 650–700 nm) as required for the applications in PDT. The main PDT action mechanisms have been investigated by computing of electron affinities, ionization potentials, triplet energies and spin‐orbit matrix elements between singlet and triplet excited states. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
A computational investigation of anomeric effects in piperidine rings bearing fluoro and trifluoromethyl substituents shows for both compounds the most pronounced evidence of the anomeric effect, as expressed as hyperconjugative delocalization of the nitrogen lone pair, in structures with the substituent in the axial position and the N–H bond in the equatorial position. This structure is the lowest-energy structure in the fluoro case but not in the trifluoromethyl case where there is an increased axial penalty associated with the CF3 group. The anomeric effect is characterized via geometrical evidence, natural bond orbital analysis, electrostatic effects, and energetic criteria. Computational results from a variety of levels of theory are presented including CCSD(T) with complete basis set extrapolation, B2PLYP-D, ωB97XD, B97-D, M06-2X, B3LYP, and MP2 allowing for a comparison of performance. The CCSD(T)/CBS results are very well represented by either B2PLYP-D or ωB97XD with moderate to large basis sets (aug-cc-pVTZ or aug-cc-pVDZ). Hyperconjugation, electrostatic effects, and steric effects play a role in the relative energetic ordering of the isomers considered.  相似文献   

8.
9.
We compare the energetic and structural properties of fully optimized α-helical and antiparallel β-sheet polyalanines and the energetic differences between axial and equatorial conformations of three cyclohexane derivatives (methyl, fluoro, and chloro) as calculated using several functionals designed to treat dispersion (B97-D, ωB97x-D, M06, M06L, and M06-2X) with other traditional functionals not specifically parametrized to treat dispersion (B3LYP, X3LYP, and PBE1PBE) and with experimental results. Those functionals developed to treat dispersion significantly overestimate interaction enthalpies of folding for the α-helix and predict unreasonable structures that contain Ramachandran φ and ψ and C = O[ellipsis (horizontal)]N H-bonding angles that are out of the bounds of databases compiled the β-sheets. These structures are consistent with overestimation of the interaction energies. For the cyclohexanes, these functionals overestimate the stabilities of the axial conformation, especially when used with smaller basis sets. Their performance improves when the basis set is improved from D95?? to aug-cc-pVTZ (which would not be possible with systems as large as the peptides).  相似文献   

10.
In this work, we take a different angle to the benchmarking of time-dependent density functional theory (TD-DFT) for the calculation of excited-state geometries by extensively assessing how accurate such geometries are compared to ground-state geometries calculated with ordinary DFT. To this end, we consider 20 medium-sized aromatic organic compounds whose lowest singlet excited states are ideally suited for TD-DFT modeling and are very well described by the approximate coupled-cluster singles and doubles (CC2) method, and then use this method and six different density functionals (BP86, B3LYP, PBE0, M06-2X, CAM-B3LYP, and ωB97XD) to optimize the corresponding ground- and excited-state geometries. The results show that although each hybrid functional reproduces the CC2 excited-state bond lengths very satisfactorily, achieving an overall root mean square error of 0.011 Å for all 336 bonds in the 20 molecules, these errors are distinctly larger than those of only 0.004–0.006 Å with which the hybrid functionals reproduce the CC2 ground-state bond lengths. Furthermore, for each functional employed, the variation in the error relative to CC2 between different molecules is found to be much larger (by at least a factor of 3) for the excited-state geometries than for the ground-state geometries, despite the fact that the molecules/states under investigation have rather uniform chemical and spectroscopic character. Overall, the study finds that even in favorable circumstances, TD-DFT excited-state geometries appear intrinsically and comparatively less accurate than DFT ground-state ones.  相似文献   

11.
We have systematically investigated the electronic structure of the d? metal-salen complexes including the Cr(II)-, Mn(III)-, Fe(IV)-, Mo(II)-, Tc(III)-, and Ru(IV)-salen complexes. Density functional theory (DFT) has been employed, using the BP86 and B3LYP functionals, and the entire M05 and M06 suites of meta-generalized gradient functionals. These results are compared to robust complete active-space self-consistent field (CASSCF) optimized geometries and complete active-space third-order perturbation theory (CASPT3) energies for the lowest singlet, triplet, and quintet states. Although the M06 and M06-L DFT functionals have been generally recommended for computations on complexes that contain main group and transition metals, none of the M0-functionals appear statistically better than the B3LYP functional for the computation of spin-state energy gaps. DFT- and CASSCF-optimized geometries normally agree to within 0.3 ? least root mean squared deviation (LRMSD) for the singlet and triplet structures and less than 0.1 ? LRMSD for the quintet structures. It can be concluded that no DFT functional tested here can be considered reliable over all metal-salen complexes and it is highly recommended that the accuracy of any given DFT functional should be assessed on a case-by-case basis.  相似文献   

12.
In this study, 12 bound complexes were selected to construct a database for testing 15 dispersion‐improved exchange‐correlation (XC) functionals, including hybrid generalized gradient approximation (GGA), modified using the Grimme's pairwise strategy, and double hybrid XC functionals, for specifically characterizing the CO2 binding by alcoholamines. Bound complexes were selected based on the characteristics of their hydrogen bonds, dispersion, and electrostatic (particularly between the positive charge of CO2 and the lone pair of N of alcoholamines) interactions. The extrapolated binding energy from the aug‐cc‐pVTZ (ATZ) to aug‐cc‐pVQZ (AQZ) basis set at the CCSD(T)/CBS(MP2+DZ) level was used as the reference for the XC functional comparison. M06‐2X produced the optimal agreement if the optimized geometries at MP2/ATZ level were chosen for all the test bound complexes. However, M06‐L, ωB97X, and ωB97, and were preferred if the corresponding density functional theory (DFT) optimized geometries were adapted for the benchmark. Simple bimolecular reaction between CO2 and monoethanolamine simulated using polarizable continuum solvation model confirmed that ωB97, ωB97X, and ωB97XD qualitatively reproduced the energetics of MP2 level. The inconsistent performance of the tested XC functionals, observed when using MP2 or DFT optimized geometries, raised concerns regarding using the single‐point ab initio correction combined with DFT optimized geometry, particularly for determining the nucleophilic attack by alcoholamines to CO2. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
The conventional strain energies of 1,2-dihydroazete, 2,3-dihydroazete, 1,2-dihydrophosphete, and 2,3-dihydrophosphete are determined within the isodesmic, homodesmotic, and hyperhomodesmotic models. Optimum equilibrium geometries, harmonic vibrational frequencies, and corresponding electronic energies and zero-point vibrational energies are computed for all pertinent molecular systems using SCF theory, second-order perturbation theory, and density functional theory and employing the correlation consistent basis sets cc-pVDZ, cc-pVTZ, and cc-pVQZ. Single-point fourth-order perturbation theory, CCSD, and CCSD(T) calculations employing the cc-pVTZ and the cc-pVQZ basis sets are computed using the MP2/cc-pVTZ and MP2/cc-pVQZ optimized geometries, respectfully, to ascertain the contribution of higher order correlation. Three DFT functionals, B3LYP, wB97XD, and M06-2X, are employed to determine whether they can yield results similar to those obtained at the CCSD(T) level.  相似文献   

14.
We evaluate the performance of ten functionals (B3LYP, M05, M05-2X, M06, M06-2X, B2PLYP, B2PLYPD, X3LYP, B97D, and MPWB1K) in combination with 16 basis sets ranging in complexity from 6-31G(d) to aug-cc-pV5Z for the calculation of the H-bonded water dimer with the goal of defining which combinations of functionals and basis sets provide a combination of economy and accuracy for H-bonded systems. We have compared the results to the best non-density functional theory (non-DFT) molecular orbital (MO) calculations and to experimental results. Several of the smaller basis sets lead to qualitatively incorrect geometries when optimized on a normal potential energy surface (PES). This problem disappears when the optimization is performed on a counterpoise (CP) corrected PES. The calculated interaction energies (ΔEs) with the largest basis sets vary from -4.42 (B97D) to -5.19 (B2PLYPD) kcal/mol for the different functionals. Small basis sets generally predict stronger interactions than the large ones. We found that, because of error compensation, the smaller basis sets gave the best results (in comparison to experimental and high-level non-DFT MO calculations) when combined with a functional that predicts a weak interaction with the largest basis set. As many applications are complex systems and require economical calculations, we suggest the following functional/basis set combinations in order of increasing complexity and cost: (1) D95(d,p) with B3LYP, B97D, M06, or MPWB1k; (2) 6-311G(d,p) with B3LYP; (3) D95++(d,p) with B3LYP, B97D, or MPWB1K; (4) 6-311++G(d,p) with B3LYP or B97D; and (5) aug-cc-pVDZ with M05-2X, M06-2X, or X3LYP.  相似文献   

15.
The present work is a theoretical investigation on supramolecular complexes of a fullerene crown ether (A and B isomers) with a derivative of π-extended tetrathiafulvalene (T). The geometry and the electronic structure of seven different conformers of the complex of dibenzo-18-crown-6 ether of fullero-N-methylpyrrolidine with a N-benzyl-N-(4-{[9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracen-2-yl]ethynyl}benzyl)ammonium cation were determined. We calculated the complexation energies and the absorption spectra, i.e., the lowest 50 excited electronic states of the complexes have been determined at the ground state optimum geometry. All calculations were carried out employing the density functional theory (DFT) and the time-dependent DFT, using the B3LYP, CAM-B3LYP, ωB97X-D, and M06-2X functionals in conjunction with the 6-31G(d,p) basis set. Various types of van der Waals interactions are observed in the complexes. Conformer complexation energies (CE) range from 2.54 to 2.14 eV in the gas phase and from 1.75 to 1.34 eV in CHCl(3) solvent at the ωB97X-D/6-31G(d,p)//M06-2X/6-31G(d,p) level of theory. There are three major features at about 390, 330, and 290 nm in the calculated absorption spectra of all the conformers. The major peaks correspond to T→T, T→T/F (electron density in both T and the fullerene F of B) and to T→F transitions, depending on the particular conformer. Other charge transfer T→F transitions are observed close to the T→T transition, indicating the possibility of photoinduced electron transfer in all these complexes.  相似文献   

16.
The substituents ? CH3, ? F, ? NO2, ? OCH3, and ? CH2?CH2 were placed at the ortho, meta, and para positions on the aromatic molecules aniline, benzaldehdye, nitrobenzene, and phenol. MMFF94, AM1, B3LYP, M06, M06‐2X, ωB97X, ωB97X‐d, and RI‐MP2 using cc‐pVDZ and cc‐pVTZ and CCSD(T) with cc‐pVDZ basis sets were used to calculate the geometries and energies of all regiomers of the molecules. Relative energies of the ortho and meta regiomers relative to the para regiomers were calculated and compared to the CCSD(T) values. A good basis set correlation between cc‐pVDZ and cc‐pVTZ was observed in RI‐MP2. Overall, RI‐MP2 gave the best correlation with the CCSD(T) results. All of the hybrid functionals showed similar accuracy and could effectively describe the intramolecular hydrogen‐bonding interactions of these compounds. The methoxy group at the para position in methoxyaniline, methoxyphenol, methoxynitrobenzene, and methoxybenzaldehyde was rotated around the phenyl‐O bond. HF, along with the cc‐pVDZ basis with the other methods, generated inaccurate energy profiles for p‐methoxyphenol. For the density functional theory methods, it was necessary to use improved grids to get smooth curves. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Density functionals with long‐range and/or empirical dispersion corrections, including LC‐ωPBE, B97‐D, ωB97X‐D, M06‐2X, B2PLYP‐D, and mPW2PLYP‐D functionals, are assessed for their ability to describe the conformational preferences of Ac‐Ala‐NHMe (the alanine dipeptide) and Ac‐Pro‐NHMe (the proline dipeptide) in the gas phase and in water, which have been used as prototypes for amino acid residues of peptides. For both dipeptides, the mean absolute deviation (MAD) is estimated to be 0.22–0.40 kcal/mol in conformational energy and 2.0–3.2° in torsion angles ? and ψ using these functionals with the 6‐311++G(d,p) basis set against the reference values calculated at the MP2/aug‐cc‐pVTZ//MP2/aug‐cc‐pVDZ level of theory in the gas phase. The overall performance is obtained in the order B2PLYP‐D ≈ mPW2PLYP‐D > ωB97X‐D ≈ M06‐2X > MP2 > LC‐ωPBE > B3LYP with the 6–311++G(d,p) basis set. The SMD model at the M06‐2X/6‐31+G(d) level of theory well reproduced experimental hydration free energies of the model compounds for backbone and side chains of peptides with MADs of 0.47 and 4.3 kcal/mol for 20 neutral and 5 charged molecules, respectively. The B2PLYP‐D/6‐311++G(d,p)//SMD M06‐2X/6‐31+G(d) level of theory provides the populations of backbone and/or prolyl peptide bond for the alanine and proline dipeptides in water that are consistent with the observed values. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

18.
The oxidation of carbon monoxide (CO) is important for a series of technological and environmental applications. In this work, the catalytic oxidation of CO on Si-doped (6,0) boron nitride nanotubes (BNNTs) is investigated by using density functional theory calculations. Reaction barriers and corresponding thermodynamic parameters were calculated using the M06-2X, B3LYP and wB97XD density functionals with 6-31G* basis set. Our results indicate that a vacancy defect in BNNT strongly stabilizes the Si adatom and makes it more positively charged. This charging enhances the adsorption of reaction gases (O2 and CO) and results in the change of the electronic structure properties of the tube. The calculated barrier of the reaction CO + O2 → CO2 + Oads on Si-doped BNNTs following the Langmuir–Hinshelwood is lower than that on the traditional noble metal catalysts. The second step of the oxidation would be the Eley–Rideal reaction (CO + Oads → CO2) with an energy barrier of about 1.8 and 10.1 kcal/mol at M06-2X/6-31G* level. This suggests that the CO oxidation catalyzed by the Si-doped BNNTs is likely to occur at the room temperature. The results also demonstrate that the activation energies and thermodynamic quantities calculated by M06-2X, B3LYP and wB97XD functionals are consistent with each other.  相似文献   

19.
Quantum chemical calculations of CF(3)Br and the CF(3) radical are performed using density functional theory (DFT) and time-dependent DFT (TDDFT). Molecular structures, vibrational frequencies, dipole moment, bond dissociation energy, and vertical excitation energies of CF(3)Br are calculated and compared with available experimental results. The performance of six hybrid and five hybrid meta functionals in DFT and TDDFT calculations are evaluated. The ωB97X, B3PW91, and M05-2X functionals give very good results for molecular structures, vibrational frequencies, and vertical excitation energies, respectively. The ωB97X functional calculates well the dipole moment of CF(3)Br. B3LYP, one of the most widely used functionals, does not perform well for calculations of the C-Br bond length, bond dissociation energy, and vertical excitation energies. Potential energy curves of the low-lying excited states of CF(3)Br are obtained using the multiconfigurational spin-orbit ab initio method. The crossing point between 2A(1) and 3E states is located near the C-Br bond length of 2.45 ?. Comparison with CH(3)Br shows that fluorination does not alter the location of the crossing point. The relation between the calculated potential energy curves and recent experimental result is briefly discussed.  相似文献   

20.
Energy differences, ΔXS‐t (X = E, H and G) (ΔXS‐t = X(singlet)‐X(triplet)) between singlet (s) and triplet (t) states are calculated at B3LYP/6‐311++G (3df,2p). The DFT calculations show that the triplet state of C4H4C is a ground state with planar conformer respect to its corresponding nonplanar singlet state. Both singlet and triplet states of C4H4M (M = Si, Ge, Sn and Pb) have a planar conformer with the singlet ground state. Four isodesmic reactions are presented for determining the stability energies, SE. NICS calculations are carried out for C4H4M to determine the aromatic character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号