首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of paddlewheel diruthenium(ii, ii) complexes with various fluorine-substituted benzoate ligands were isolated as THF adducts and structurally characterized: [Ru(2)(F(x)PhCO(2))(4)(THF)(2)] (F(x)PhCO(2)(-) = o-fluorobenzoate, o-F; m-fluorobenzoate, m-F; p-fluorobenzoate, p-F; 2,6-difluorobenzoate, 2,6-F(2); 3,4-difluorobenzoate, 3,4-F(2); 3,5-difluorobenzoate, 3,5-F(2); 2,3,4-trifluorobenzoate, 2,3,4-F(3); 2,3,6-trifluorobenzoate, 2,3,6-F(3); 2,4,5-trifluorobenzoate, 2,4,5-F(3); 2,4,6-trifluorobenzoate, 2,4,6-F(3); 3,4,5-trifluorobenzoate, 3,4,5-F(3); 2,3,4,5-tetrafluorobenzoate, 2,3,4,5-F(4); 2,3,5,6-tetrafluorobenzoate, 2,3,5,6-F(4); pentafluorobenzoate, F(5)). By adding fluorine atoms on the benzoate ligands, it was possible to tune the redox potential (E(1/2)) for [Ru(2)(II,II)]/[Ru(2)(II,III)](+) over a wide range of potentials from -40 mV to 350 mV (vs. Ag/Ag(+) in THF). 2,3,6-F(3), 2,3,4,5-F(4), 2,3,5,6-F(4) and F(5) were relatively air-stable compounds even though they are [Ru(2)(II,II)] species. The redox potential in THF was dependent on an electronic effect rather than on a structural (steric) effect of the o-F atoms, although more than one substituent in the m- and p-positions shifted E(1/2) to higher potentials in relation to the general Hammett equation. A quasi-Hammett parameter for an o-F atom (σ(o)) was estimated to be ~0.2, and a plot of E(1/2)vs. a sum of Hammett parameters including σ(o) was linear. In addition, the HOMO energy levels, which was calculated based on atomic coordinates of solid-state structures, as well as the redox potential were affected by adding F atoms. Nevertheless, a steric contribution stabilizing their static structures in the solid state was present in addition to the electronic effect. On the basis of the electronic effect, the redox potential of these complexes is correlated to the HOMO energy level, and the electronic effect of F atoms is the main factor controlling the ionization potential of the complexes with ligands free from the rotational constraint, i.e. complexes in solution.  相似文献   

2.
The temperature‐induced stepwise neutral–ionic (N–I) phase transition in the covalently bonded donor–acceptor chain compound [Ru2(2,3,5,6‐F4PhCO2)4DMDCNQI] ? 2(p‐xylene) (2,3,5,6‐F4PhCO2?=2,3,5,6‐tetrafluorobenzoate; DMDCNQI=2,5‐dimethyl‐N,N′‐dicyanoquinodiimine) was systematically tuned over a wide temperature range using two techniques: 1) A chemical technique based on doping with a less‐active donor unit [Ru2II,II(F5PhCO2)4] (F5PhCO2?=pentafluorobenzoate), thereby providing an isostructural doped series [{Ru2II,II(2,3,5,6‐F4PhCO2)4}1?x{Ru2II,II(F5PhCO2)4}xDMDCNQI] ? 2(p‐xylene), with x=0.06, 0.10, 0.21, and 0.24; and 2) a physical technique, which was the application of hydrostatic pressure to the doped compounds. The stepwise N–I transition observed in the original compound was systematically varied in terms of the viewpoints of both transition temperature and transition features (stepwise or monotonic) dependent on the amount of dopants x. Application of pressure efficiently tuned the N–I transitions, with the oxidation phases being dramatically modified by applying only weak pressure up to 4 kbar. Even in cases that led to N–I transitions in small domains of the chains at ambient pressure, the application of pressure caused an expansion of the domains that enabled N–I transitions, finally leading to a complete change in the oxidation state of the chains, from neutral to ionic, accompanied by a change from a paramagnetic state to a ferrimagnetically ordered state.  相似文献   

3.
We report two new synthetic routes to the dinuclear Ru(I) complexes, [Ru(I)(2)(RCO(2))(CO)(4)(N( wedge )N)(2)](+) (N( wedge )N = 2,2'-bipyridine or 1,10-phenanthroline derivatives) that use RuCl(3).3H(2)O as a starting material. Direct addition of the bidentate diimine ligand to a methanolic solution of [Ru(CO)(2)Cl(2)](n) and sodium acetate yielded a mixture of [Ru(I)(2)(MeCO(2))(CO)(4)(N( wedge )N)(2)](+) (N( wedge )N = 4,4'-dmbpy, and 5,6-dmphen), and [Ru(II)(MeCO(2))(2)(CO)(2)(N( wedge )N)] (N( wedge )N = 4,4'-dmbpy and 5,5'-dmbpy). Single-crystal X-ray studies confirmed that the Ru(II) complexes had a trans-acetate-cis-carbonyl arrangement of the ligands. In contrast, the use of sodium benzoate resulted in the unexpected formation of a Ru-C bond producing ortho-cyclometalated complexes, [Ru(II)(O(2)CC(6)H(4))(CO)(2)(N( wedge )N)], where N( wedge )N = bpy or phen. A second approach used ligand exchange between a bidentate ligand (N( wedge )N) and the pyridine ligands of [Ru(I)(RCO(2))(CO)(2)(py)](2) to convert these neutral complexes into [Ru(I)(2)(RCO(2))(CO)(4)(N( wedge )N)(2)](+). This method, although it involved more steps, was applicable for a wider variety of diimine ligands (R = Me and N( wedge )N = 4,4'-dmbpy, 5,5'-dmbpy, 5,6-dmphen; R = Ph and N( wedge )N = bpy, phen, 5,6-dmphen).  相似文献   

4.
Reaction of 2-(arylazo)phenols with [Ru(PPh(3))(2)(CO)(2)Cl(2)] affords a family of organometallic complexes of ruthenium(II) of type [Ru(PPh(3))(2)(CO)(CNO-R)], where the 2-(arylazo)phenolate ligand (CNO-R; R = OCH(3), CH(3), H, Cl, and NO(2)) is coordinated to the metal center as tridentate C,N,O-donor. Another group of intermediate complexes of type [Ru(PPh(3))(2)(CO)(NO-R)(H)] has also been isolated, where the 2-(arylazo)phenolate ligand (NO-R) is coordinated to the metal center as bidentate N,O-donor. Structures of the [Ru(PPh(3))(2)(CO)(NO-OCH(3))(H)] and [Ru(PPh(3))(2)(CO)(CNO-OCH(3))] complexes have been determined by X-ray crystallography. All the complexes are diamagnetic and show characteristic (1)H NMR signals and intense MLCT transitions in the visible region. Both the [Ru(PPh(3))(2)(CO)(NO-R)(H)] and [Ru(PPh(3))(2)(CO)(CNO-R)] complexes show two oxidative responses on the positive side of SCE.  相似文献   

5.
The reactions of [Ru(3)(CO)(12)] with four aromatic diazines have been studied in THF at reflux temperature. With phthalazine (L(1)), the compound [Ru(3)(μ-κ(2)N(2)N(3)-L(1))(μ-CO)(3)(CO)(7)] (1), which contains an intact phthalazine ligand in an axial position bridging an Ru-Ru edge through both N atoms, is initially formed but it reacts with more phthalazine to give [Ru(3)(κN(2)-L(1))(μ-κ(2)N(2)N(3)-L(1))(μ-CO)(3)(CO)(6)] (2), in which a π-π stacking interaction between the aromatic rings of both ligands determines their position in cluster axial sites on the same face of the Ru(3) triangle. With quinazoline (HL(2)), the cyclometalated hydrido decacarbonyl derivative [Ru(3)(μ-H)(μ-κ(2)N(3)C(4)-L(2))(CO)(10)] (3) is initially produced but it partially decarbonylates under the reaction conditions to give [Ru(6)(μ-H)(2)(μ-κ(2)N(3)C(4)-L(2))(μ(3)-κ(3)-N(1)N(3)C(4)-L(2))(CO)(19)] (4), which results from the displacement of a CO ligand of 3 by the uncoordinated N(1) atom of another molecule of 3. With 4,7-phenanthroline (H(2)L(3)), the stepwise formation of the cyclometalated derivatives [Ru(3)(μ-H)(μ-κ(2)N(4)C(3)-HL(3))(CO)(10)] (5) and two isomers of [Ru(6)(μ-H)(2)(μ(4)-κ(4)N(4)C(3)N(7)C(8)-L(3))(CO)(20)] (6a, 6b) takes place. In compounds 6a and 6b, two Ru(3)(μ-H)(CO)(10) trinuclear units are symmetrically (C(2) in 6a or C(S) in 6b) bridged by a doubly-cyclometalated 4,7-phenanthroline ligand. With 2,3'-bipyridine (HL(4)), two products have been isolated, [Ru(3)(μ-H)(μ-κ(2)N(3')C(4')-L(4))(CO)(10)] (7) and [Ru(3)(μ-H)(μ-κ(3)N(2)N(3')C(2')-L(4))(CO)(9)] (8). While compound 7 contains an N(3')C(4')-cyclometalated 2,3'-bipyridine, in compound 8 an N(3')C(2')-cyclometalation is accompanied by the coordination of the N(2) atom of the remaining pyridine fragment. The structures of compounds 2, 3, 4, 6a and 8 have been determined by X-ray diffraction crystallography.  相似文献   

6.
Paramagnetic (1)H NMR and electron paramagnetic resonance (EPR) spectroscopies and density functional theory (DFT) spin density calculations were selectively performed on the [{(NH(3))(5)Ru}(2)(μ-L)](3+,?4+,?5+) complexes, where L is 2,3,5,6-tetrachloro-, 2,5-dichloro-, 2,5-dimethyl-, and unsubstituted 1,4-dicyanamidobenzene dianion, to characterize the electronic structure of these complexes. EPR spectra of the [{(NH(3))(5)Ru}(2)(μ-L)](3+) complexes in N,N'-dimethylformamide at 4 K showed a ruthenium axial signal, and thus the complexes are [Ru(II),L(2-), Ru(III)] mixed-valence systems. DFT spin density calculations of [{(NH(3))(5)Ru}(2)(μ-L)](3+) where L = 1,4-dicyanamidobenzene dianion gave mostly bridging-ligand centered spin distribution for both vacuum and implicit solvent calculations, in poor agreement with EPR, but more realistic results were obtained when explicit electrostatic interactions between solute and solvent were included in modeling. For the [{(NH(3))(5)Ru}(2)(μ-L)](4+) complexes, EPR spectroscopy showed no signal down to 4 K. Nevertheless, solvent-dependent (1)H NMR data and analysis support a [Ru(III),L(2-), Ru(III)] state. Hyperfine coupling constants (A(c)/h) of trans- and cis-ammine and phenyl hydrogens were determined to be 17.2, 3.8, and -1.5 MHz respectively. EPR studies of the [{(NH(3))(5)Ru}(2)(μ-L)](5+) complexes showed a metal-radical axial signal and based on previously published (1)H NMR data, a [Ru(IV),L(2-), Ru(III)] state is favored over a [Ru(III),L(-), Ru(III)] state.  相似文献   

7.
The redox systems [Ru(L)(bpy)(2)](k), [Ru(L)(2)(bpy)](m), and [Ru(L)(3)](n) containing the potentially redox-active ligand 9-oxidophenalenone = L(-) were investigated by spectroelectrochemistry (UV-vis-near-IR and electron paramagnetic resonance) in conjunction with density functional theory (DFT) calculations. Compounds [Ru(L(-))(bpy)(2)]ClO(4) ([1]ClO(4)) and [Ru(L(-))(2)(bpy)]ClO(4) ([2]ClO(4)) were structurally characterized. In addition to establishing electron-transfer processes involving the Ru(II)/Ru(III)/Ru(IV) and bpy(0)/bpy(?-) couples, evidence for the noninnocent behavior of L(-) was obtained from [Ru(IV)(L(?))(L(-))(bpy)](3+), which exhibits strong near-IR absorption due to ligand-to-ligand charge transfer. In contrast, the lability of the electrogenerated anion [Ru(L)(2)(bpy)](-) is attributed to a resonance situation [Ru(II)(L(?2-))(L(-))(bpy)](-)/[Ru(II)(L(-))(2) (bpy(?-))](-), as suggested by DFT calculations.  相似文献   

8.
The title compound, [Ru(2)(O(2)CCF(3))(4)] (1), has been obtained without any exogenous ligands and crystallized by deposition from the gas phase at 170 degrees C. Its crystal structure has been determined for the first time to confirm an infinite chain motif built on axial Ru...O interactions of the diruthenium(II,II) units. The X-ray diffraction studies at variable temperatures showed no phase transitions in the range of 295-100 K but revealed a significant decrease in the volume per atom from 14.2 to 13.3 A(3). This noticeable thermal compressibility effect is discussed in connection with the solid-state packing of the [Ru(2)(O(2)CCF(3))(4)](infinity) chains. The highly electrophilic character of the diruthenium(II,II) units has been shown by the gas-phase deposition reaction of [Ru(2)(O(2)CCF(3))(4)] with an aromatic donor substrate, namely [2.2]paracyclophane (C(16)H(16)). As a result of the above reaction, a new arene adduct [Ru(2)(O(2)CCF(3))(4).C(16)H(16)] (2) has been isolated in crystalline form. It has an extended one-dimensional (1D) chain structure comprised of alternating building units and based on the rare bridging mode of [2.2]paracyclophane, [Ru(2)(O(2)CCF(3))(4).(mu(2)-eta(2):eta(2)-C(16)H(16))](infinity). The magnetic susceptibility of 1 and 2 has been measured and compared in the range of 1.8-300 K. In addition, in the course of synthesis of 1 by the carboxylate exchange reactions, a new mixed-carboxylate diruthenium(II,II) core complex [Ru(2)(O(2)CCF(3))(3)(O(2)CC(2)H(5))] (3), bearing no exogenous ligands, has also been isolated and structurally characterized. It exhibits an interesting polymeric structure in which the ruthenium(II) centers selectively form axial interdimer contacts with the O-atoms of the propionate groups only.  相似文献   

9.
[(Ru(eta(6)-p-cymene)(mu-Cl)Cl)(2)] and [(Ru(eta(3):eta(3)-C(10)H(16))(mu-Cl)Cl)(2)] react with Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2) (R = Et (1a), Ph (1b)) affording complexes [Ru(eta(6)-p-cymene)Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (2a), Ph (2b)) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (6a), Ph (6b)). While treatment of 2a with 1 equiv of AgSbF(6) yields a mixture of [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (3a) and [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,N-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (4a), [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OPh)(2)]Ph(2))][SbF(6)] (3b) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)] (R = Et (7a), Ph (7b)) are selectively formed from 2b and 6a,b. Complexes [Ru(eta(6)-p-cymene)(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (5a), Ph (5b)) and [Ru(eta(3):eta(3)-C(10)H(16))(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (8a), Ph (8b)) have been prepared using 2 equiv of AgSbF(6). The reactivity of 3-5a,b has been explored allowing the synthesis of [Ru(eta(6)-p-cymene)X(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et, Ph; X = Br, I, N(3), NCO (9-12a,b)). The catalytic activity of 2-8a,b in transfer hydrogenation of cyclohexanone, as well as theoretical calculations on the models [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,N-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+ and [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,O-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+, has been also studied.  相似文献   

10.
Reaction of [Ru(VI)(N)(sap)Cl] with excess NaN(3) affords a novel paramagnetic triazidoruthenium(III) complex [Ru(III)(sap)(N(3))(3)](2-), which is isolated as a PPh(4)(+) salt (1). Reaction of 1 with Ni(2+) and Co(2+) ions produce two isostructural hexanuclear [Ru(4)M(2)] compounds, [Ru(IV)(4)M(II)(2)(μ(3)-OMe)(2)(μ-OMe)(2)(μ-N)(2)(μ-N(3))(2)(μ-O(phenoxy))(2)(sap)(4) (MeOH)(4)] (M = Ni 2 or Co 3). The molecular structures of 1-3 have been determined by X-ray crystallography. 1 is a mononuclear ruthenium(III) compound where three azide ligands are bonded to ruthenium in a meridional fashion, while compounds 2 and 3 are isostructural hexanuclear compounds containing a defective face-sharing dicubane-like core with two missing vertexes. Variable-temperature dc magnetic susceptibility studies have been carried out for 2 and 3. These data indicate that there are four diamagnetic Ru(IV) ions in 2 and 3 and there is ferromagnetic interaction between the two Ni(2+) in 2 and Co(2+) in 3 via the methoxy bridges.  相似文献   

11.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

12.
Reaction of [Ru (VI)(N)(L (1))(MeOH)] (+) (L (1) = N, N'-bis(salicylidene)- o-cyclohexylenediamine dianion) with excess pyridine in CH 3CN produces [Ru (III)(L (1))(py) 2] (+) and N 2. The proposed mechanism involves initial equilibrium formation of [Ru (VI)(N)(L (1))(py)] (+), which undergoes rapid N...N coupling to produce [(py)(L (1))Ru (III) N N-Ru (III)(L (1))(py)] (2+); this is followed by pyridine substituion to give the final product. This ligand-induced N...N coupling of Ru (VI)N is utilized in the preparation of a series of new ruthenium(III) salen complexes, [Ru (III)(L)(X) 2] (+/-) (L = salen ligand; X = H 2O, 1-MeIm, py, Me 2SO, PhNH 2, ( t )BuNH 2, Cl (-) or CN (-)). The structures of [Ru (III)(L (1))(NH 2Ph) 2](PF 6) ( 6), K[Ru (III)(L (1))(CN) 2] ( 9), [Ru (III)(L (2))(NCCH 3) 2][Au (I)(CN) 2] ( 11) (L (2) = N, N'-bis(salicylidene)- o-phenylenediamine dianion) and [N ( n )Bu 4][Ru (III)(L (3))Cl 2] ( 12) (L (3) = N, N'-bis(salicylidene)ethylenediamine dianion) have been determined by X-ray crystallography.  相似文献   

13.
The spectroscopic properties and the electronic structure of the only nitrous oxide complex existing in isolated form, [Ru(NH(3))(5)(N(2)O)]X(2) (1, X = Br(-), BF(4)(-)), are investigated in detail in comparison to the nitric oxide precursor, [Ru(NH(3))(5)(NO)]X(3) (2). IR and Raman spectra of 1 and of the corresponding (15)NNO labeled complex are presented and assigned with the help of normal coordinate analysis (NCA) and density functional (DFT) calculations. This allows for the identification of the Ru-N(2)O stretch at approximately 300 cm(-)(1) and for the unambiguous definition of the binding mode of the N(2)O ligand as N-terminal. Obtained force constants are 17.3, 9.6, and 1.4 mdyn/A for N-N, N-O, and Ru-N(2)O, respectively. The Ru(II)-N(2)O bond is dominated by pi back-donation, which, however, is weak compared to the NO complex. This bond is further weakened by Coulomb repulsion between the fully occupied t(2g) shell of Ru(II) and the HOMO of N(2)O. Hence, nitrous oxide is an extremely weak ligand to Ru(II). Calculated free energies and formation constants for [Ru(NH(3))(5)(L)](2+) (L = NNO, N(2), OH(2)) are in good agreement with experiment. The observed intense absorption at 238 nm of 1 is assigned to the t(2g) --> pi(*) charge transfer transition. These data are compared in detail to the spectroscopic and electronic structural properties of NO complex 2. Finally, the transition metal centered reaction of nitrous oxide to N(2) and H(2)O is investigated. Nitrous oxide is activated by back-donation. Initial protonation leads to a weakening of the N-O bond and triggers electron transfer from the metal to the NN-OH ligand through the pi system. The implications of this mechanism for biological nitrous oxide reduction are discussed.  相似文献   

14.
Inventing new wheels: reaction of [M(3)(CO)(12) ] (M=Ru, Os) with 4-RC(6)H(4)SH afforded [{M(S-4-RC(6)H(4))(2)(CO)(2)}(8)] (R=H; I) or [{M(S-4-RC(6)H(4))(2)(CO)(2)}(6)] (R=Me, iPr; II; see scheme), all of which have been structurally characterized. The octamers I are unique metal molecular wheels featuring skew-edge-shared octahedra with a central planar M(8) octagon. [{Ru(S-4-iPrC(6)H(4))(2)(CO)(2)}(6)] selectively binds a Cu(+) or Ag(+) ion to form [M'{Ru(S(4-iPr-C(6)H(4)))(2)(CO)(2)}(6)](+) (III).  相似文献   

15.
Among the many mechanisms for the oxidation of guanine derivatives (G) assisted by transition metals, Ru(III) and Pt(IV) metal ions share basically the same principle. Both Ru(III)- and Pt(IV)-bound G have highly positively polarized C8-H's that are susceptible to deprotonation by OH(-), and both undergo two-electron redox reactions. The main difference is that, unlike Pt(IV), Ru(III) is thought to require O(2) to undergo such a reaction. In this study, however, we report that [Ru(III)(NH(3))(5)(dGuo)] (dGuo = deoxyguanosine) yields cyclic-5'-O-C8-dGuo (a two-electron G oxidized product, cyclic-dGuo) without O(2). In the presence of O(2), 8-oxo-dGuo and cyclic-dGuo were observed. Both [Ru(II)(NH(3))(5)(dGuo)] and cyclic-dGuo were produced from [Ru(III)(NH(3))(5)(dGuo)] accelerated by [OH(-)]. We propose that [Ru(III)(NH(3))(5)(dGuo)] disproportionates to [Ru(II)(NH(3))(5)(dGuo)] and [Ru(IV)(NH(3))(4)(NH(2)(-))(dGuo)], followed by a 5'-OH attack on C8 in [Ru(IV)(NH(3))(4)(NH(2)(-))(dGuo)] to initiate an intramolecular two-electron transfer from dGuo to Ru(IV), generating cyclic-dGuo and Ru(II) without involving O(2).  相似文献   

16.
The new dipyridylamino/triazine ligand DDE (N(2),N(2),N(4),N(4)-tetraethyl-N(6),N(6)-di(pyridin-2-yl)-1,3,5-triazine-2,4,6-triamine) has been incorporated into the mononuclear Fe(II) SCO compounds cis-[Fe(II)(NCSe)(2)(DDE)(2)] (1), cis-[Fe(II)(NCBH(3))(2)(DDE)(2)] (2), and cis-[Fe(II)(NCS)(2)(DDE)(2)] (3). Magnetic susceptibility measurements reveal that each of 1, 2 and 3 undergoes a complete, continuous spin transition with a T(?) of ~260 K, ~300 K and ~205 K, respectively. An analogue and isomorph of 1, cis-[Co(II)(NCSe)(2)(DDE)(2)] (4), remains high spin down to low temperatures. Variable temperature single crystal data reveal that 1 and 4 undergo a crystallographic phase transition (from orthorhombic Pbcn at high temperatures to monoclinic P2/c at low temperatures) accompanied by an order-disorder transition of ethyl moieties of the DDE ligand. In the Pbcn phase, the structures of 1 and 4 contain one crystallographically unique M(II) centre, while in the P2/c phase, 1 and 4 contain two crystallographically unique M(II) centres. Variable temperature powder X-ray diffraction experiments reveal that the crystallographic phase transition occurs at ~250 K for 1. The occurrence of the concomitant order-disorder and crystallographic phase transitions undergone by 1 and 4 is not directly apparent in their magnetic susceptibility measurements, and this is likely due to the local environment of the M(II) centres remaining largely undisturbed as the transitions occur. The compound 2 is isostructural to 1 and 4 at low temperatures.  相似文献   

17.
The ruthenium oxyl radical complex, [Ru(II)(trpy)(Bu(2)SQ)O(.-)] (trpy = 2,2':6',2"-terpyridine, Bu(2)SQ = 3,5-di-tert-butyl-1,2-benzosemiquinone) was prepared for the first time by the double deprotonation of the aqua ligand of [Ru(III)(trpy)(Bu(2)SQ)(OH(2))](ClO(4))(2). [Ru(III)(trpy)(Bu(2)SQ)(OH(2))](ClO(4))(2) is reversibly converted to [Ru(III)(trpy)(Bu(2)SQ)(OH-)](+) upon dissociation of the aqua proton (pK(a) 5.5). Deprotonation of the hydroxo proton gave rise to intramolecular electron transfer from the resultant O(2-) to Ru-dioxolene. The resultant [Ru(II)(trpy)(Bu(2)SQ)O(.-)] showed antiferromagnetic behavior with a Ru(II)-semiquinone moiety and oxyl radical, the latter of which was characterized by a spin trapping technique. The most characteristic structural feature of [Ru(II)(trpy)(Bu(2)SQ)O(.-)] is a long Ru-O bond length (2.042(6) A) as the first terminal metal-O bond with a single bond length. To elucidate the substituent effect of a quinone ligand, [Ru(III)(trpy)(4ClSQ)(OH(2))](ClO(4))(2) (4ClSQ = 4-chloro-1,2-benzosemiquinone) was prepared and we compared the deprotonation behavior of the aqua ligand with that of [Ru(III)(trpy)(Bu(2)SQ)(OH(2))](ClO(4))(2). Deprotonation of the aqua ligand of [Ru(III)(trpy)(4ClSQ)(OH(2))](ClO(4))(2) induced intramolecular electron transfer from OH- to the [Ru(III)(4ClSQ)] moiety affording [Ru(II)(trpy)(4ClSQ)(OH.)]+, which then probably changed to [Ru(II)(trpy)(4ClSQ)O(.-)]. The antiferromagnetic interactions (J values) between Ru(II)-semiquinone and the oxyl radical for [Ru(II)(trpy)(Bu(2)SQ)O(.-)] and for [Ru(II)(trpy)(4ClSQ)O(.-)] were 2J = -0.67 cm(-1) and -1.97 cm(-1), respectively.  相似文献   

18.
Hirano T  Oi T  Nagao H  Morokuma K 《Inorganic chemistry》2003,42(20):6575-6583
cis-[Ru(NO)Cl(pyca)(2)] (pyca = 2-pyridinecarboxylato), in which the two pyridyl nitrogen atoms of the two pyca ligands coordinate at the trans position to each other and the two carboxylic oxygen atoms at the trans position to the nitrosyl ligand and the chloro ligand, respectively (type I shown as in Chart 1), reacted with NaOCH(3) to generate cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I). The geometry of this complex was confirmed to be the same as the starting complex by X-ray crystallography: C(13.5)H(13)N(3)O(6.5)Ru; monoclinic, P2(1)/n; a = 8.120(1), b = 16.650(1), c = 11.510(1) A; beta = 99.07(1) degrees; V = 1536.7(2) A(3); Z = 4. The cis-trans geometrical change reaction occurred in the reactions of cis-[Ru(NO)(OCH(3))(pyca)(2)] (type I) in water and alcohol (ROH, R = CH(3), C(2)H(5)) to form [[trans-Ru(NO)(pyca)(2)](2)(H(3)O(2))](+) (type V) and trans-[Ru(NO)(OR)(pyca)(2)] (type V). The reactions of the trans-form complexes, trans-[Ru(NO)(H(2)O)(pyca)(2)](+) (type V) and trans-[Ru(NO)(OCH(3))(pyca)(2)] (type V), with Cl(-) in hydrochloric acid solution afforded the cis-form complex, cis-[Ru(NO)Cl(pyca)(2)] (type I). The favorable geometry of [Ru(NO)X(pyca)(2)](n)(+) depended on the nature of the coexisting ligand X. This conclusion was confirmed by theoretical, synthetic, and structural studies. The mono-pyca-containing nitrosylruthenium complex (C(2)H(5))(4)N[Ru(NO)Cl(3)(pyca)] was synthesized by the reaction of [Ru(NO)Cl(5)](2)(-) with Hpyca and characterized by X-ray structural analysis: C(14)H(24)N(3)O(3)Cl(3)Ru; triclinic, Ponemacr;, a = 7.631(1), b = 9.669(1), c = 13.627(1) A; alpha = 83.05(2), beta = 82.23(1), gamma = 81.94(1) degrees; V = 981.1(1) A(3); Z = 2. The type II complex of cis-[Ru(NO)Cl(pyca)(2)] was synthesized by the reaction of [Ru(NO)Cl(3)(pyca)](-) or [Ru(NO)Cl(5)](2)(-) with Hpyca and isolated by column chromatography. The structure was determined by X-ray structural analysis: C(12)H(8)N(3)O(5)ClRu; monoclinic, P2(1)/n; a = 10.010(1), b = 13.280(1), c = 11.335(1) A; beta = 113.45(1) degrees; V = 1382.4(2) A(3); Z = 4.  相似文献   

19.
A one-pot reaction of a cationic diruthenium complex, [Ru(2)(II,III)(O(2)CCH(3))(4)(THF)(2)](BF(4)), with arylcarboxylic acids, ArCO(2)H, (PhCO(2)H = benzoic acid, NapCO(2)H = 1-naphthoic acid, AntCO(2)H = 9-anthracenecarboxylic acid) in NDMA (NDMA = N,N-dimethylaniline) has led to isolation of neutral paddlewheel-type diruthenium complexes, [Ru(II)(2)(O(2)CAr)(4)(THF)(2)] (Ar = Ph (1), Nap (2), Ant (3)). Paramagnetic variable temperature (VT) (1)H NMR studies and GC-MS studies show that the reaction consists of two steps: a one-electron reduction of the Ru(2) core by NDMA and a simple carboxylate-exchange reaction. All compounds 1-3 were structurally characterized by X-ray crystallography. While the structural features of the Ru(2) core are very similar in all the compounds, the dihedral angles between the carboxylate plane and the aromatic ring are larger with the expanding of aryl groups from phenyl to anthracene. The effect of pi-pi stacking leads to the formation of a 1-D chain structure in compound 3, whereas compounds 1 and 2 are fully isolated from each other. The electrochemical measurements show that the quasireversible one-electron oxidation step is observed at +0.06, +0.09, and +0.17 V (vs Ag/Ag(+)) for 1-3, respectively, assigned to the Ru(II)(2)/Ru(II,III)(2) redox couple. These potentials are found to demonstrate a linear relationship with the substituent constants for aryl compounds,.  相似文献   

20.
The article deals with the ruthenium complexes, [(bpy)Ru(Q')(2)] (1-3) incorporating two unsymmetrical redox-noninnocent iminoquinone moieties [bpy = 2,2'-bipyridine; Q' = 3,5-di-tert-butyl-N-aryl-1,2-benzoquinonemonoimine, aryl = C(6)H(5) (Q'(1)), 1; m-Cl(2)C(6)H(3) (Q'(2)), 2; m-(OCH(3))(2)C(6)H(3) (Q'(3)), 3]. 1 and 3 have been preferentially stabilised in the cc-isomeric form while both the ct- and cc-isomeric forms of 2 are isolated [ct: cis and trans and cc: cis and cis with respect to the mutual orientations of O and N donors of two Q']. The isomeric identities of 1-3 have been authenticated by their single-crystal X-ray structures. The collective consideration of crystallographic and DFT data along with other analytical events reveals that 1-3 exhibit the valence configuration of [(bpy)Ru(II)(Q'(Sq))(2)]. The magnetization studies reveal a ferromagnetic response at 300 K and virtual diamagnetic behaviour at 2 K. DFT calculations on representative 2a and 2b predict that the excited triplet (S = 1) state is lying close to the singlet (S = 0) ground state with singlet-triplet separation of 0.038 eV and 0.075 eV, respectively. In corroboration with the paramagnetic features the complexes exhibit free radical EPR signals with g~2 and (1)HNMR spectra with broad aromatic proton signals associated with the Q' at 300 K. Experimental results in conjunction with the DFT (for representative 2a and 2b) reveal iminoquinone based preferential electron-transfer processes leaving the ruthenium(ii) ion mostly as a redox insensitive entity: [(bpy)Ru(II)(Q'(Q))(2)](2+) (1(2+)-3(2+)) ? [(bpy)Ru(II)(Q(')(Sq))(Q(')(Q))](+) (1(+)-3(+)) ? [(bpy)Ru(II)(Q(')(Sq))(2)] (1-3) ? [(bpy)Ru(II)(Q(')(Sq))(Q(')(Cat))](-)/[(bpy)Ru(III)(Q(')(Cat))(2)](-) (1(-)-3(-)). The diamagnetic doubly oxidised state, [(bpy)Ru(II)(Q'(Q))(2)](2+) in 1(2+)-3(2+) has been authenticated further by the crystal structure determination of the representative [(bpy)Ru(II)(Q'(3))(2)](ClO(4))(2) [3](ClO(4))(2) as well as by its sharp (1)H NMR spectrum. The key electronic transitions in each redox state of 1(n)-3(n) have been assigned by TD-DFT calculations on representative 2a and 2b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号