首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Variations in the essential oil composition of Salvia officinalis L. growing in Estonia and in other European countries were determined. The oils were obtained in yields of 2.2-24.8 mL kg(-1). In three samples, the content of essential oil did not conform to the EP standard (10 mL kg(-1)). Variations in the essential oil composition of sage were studied using capillary gas chromatographic methods. A total of 40 components were identified. The principal components in the sage oils were 1,8-cineole, camphor, alpha-thujone, beta-thujone, borneol, and viridiflorol. The chemotypes of sage were not determined in investigated samples. The concentration of the main compounds in the drugs cultivated in Estonia varied in about the same range as the concentrations of these compounds in the oils of drugs obtained from other countries. The comparatively high concentration of toxic thujones seem to be characteristic to sage leaves cultivated in Estonia.  相似文献   

3.
4.
5.
6.

Background

The process of thermal decomposition of dichloromethane (DCM) and chlorobenzene (MCB) during the combustion in an inert, bubbling fluidized bed, supported by LPG as auxiliary fuel, have been studied. The concentration profiles of C6H5CI, CH2Cl2, CO2, CO, NOx, COCl2, CHCl3, CH3Cl, C2H2, C6H6, CH4 in the flue gases were specified versus mean bed temperature.

Results

The role of preheating of gaseous mixture in fluidized bed prior to its ignition inside bubbles was identified as important factor for increase the degree of conversion of DCM and MCB in low bed temperature, in comparison to similar process in the tubular reactor.

Conclusions

Taking into account possible combustion mechanisms, it was identified that autoignition in bubbles rather than flame propagation between bubbles is needed to achieve complete destruction of DCM and MCB. These condition occurs above 900°C causing the degree of conversion of chlorine compounds of 92-100%.  相似文献   

7.
Summary The structure of new triterpene glycosides from the roots of potmarigold calendula (C. officinalis) has been established: oleanolic acid 3-{[galactopyranosido-(13)] [glucopyranosido-(12)]--D-glucopy-ranoside} (calenduloside C) and the 28-acyl--D-glucopyranoside of calenduloside C (calenduloside D).All-Union Scientific-Research Institute of Medicinal Plants. N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR. Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 366–373, May–June, 1975.  相似文献   

8.
9.
Conclusions A glycoside of hypsogenic acid called saponaroside has been isolated for the first time from the roots ofSaponaria officinalis L. It was shown that the glycoside is-D-xylopyranoside-3-hypsogenic acid.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 1, pp. 137–138, January, 1969.  相似文献   

10.
11.
Following the characterization of hypoglycemic, gastric emptying inhibitory, and gastroprotective principles and the structure elucidation of calendasaponins A, B, C, and D, two new ionone glucosides (officinosides A and B), and two sesquiterpene oligoglycosides (officinosides C and D), were isolated from the flowers of Egyptian Calendula officinalis. The structures of the officinosides were elucidated on the basis of chemical and physicochemical evidence.  相似文献   

12.
Calendula officinalis and Sambucus nigra flowers were analysed by reversed-phase high-performance liquid chromatography (RP-HPLC) and micellar electrokinetic capillary chromatography (MECC). RP-HPLC was performed on C8 Aquapore RP 300 columns with eluents containing 2-propanol and tetrahydrofuran. MECC was carried out on a 72-cm fused-silica capillary using sodium dodecyl sulphate and sodium borate (pH 8.3) as the running buffer. The results obtained by these techniques are compared.  相似文献   

13.
14.
The composition of essential oil extracted from Valeriana officinalis L. roots growing wild in Iran was studied by hydrodistillation and supercritical CO2 extraction. Forty-seven components representing 89.3% and 35 constituents varying from 86.1% to 95.1% of the oil obtained by hydrodistillation and supercritical CO2 were identified, respectively. The major components in the extracted oil from supercritical CO2 were isovaleric acid (18.7-41.8%), valerenic acid (8.2-11.8%), acetoxyvaleranone (5.6-9.6%), (Z)-valernyl acetate (4.5-6.5%), bornyl acetate (2.3-7.7%) and valerenol (3.7-5.2%), whereas by hydrodistillation were bornyl acetate (11.6%), valerenic acid (8.0%), (Z)-valernyl acetate (7.9%) and acetoxyvaleranone (7.6%). The analysis of the extracts was performed by capillary GC and GC/MS.  相似文献   

15.
<正>A new flavonoid was isolated from the bract of Zea mays L.The structure of the compound was identified as 4',5,7-trihydroxy-3',5'-dimethoxyflavone 7-O-[β-D-apiofuranosyl(1→2)]-β-D-glucopyranoside on the ground of chemical and spectroscopic methods.  相似文献   

16.
Rosa indica symbol of godness and beauty known for various healing power, has astringent, sedative, anti-inflammatory and antidepressant qualities. Standard methods were used for qualitative detection of phyto-compounds, and quantitative detection of antioxidants was done using DPPH radical scavenging assay, total phenolics and total flavonoids content were expressed in mg GAE/g dry weight and mg QE/g dry weight. Results revealed phyto-compounds presence in all varieties under study however maximum % inhibition was observed by R. indica var pink perfume (94 ± 0.6) with IC50 value 0.3376 ± 0.01 mg/mL. Highest phenolic and flavonoid content was observed in the leaves extract of R. indica var cardinal red, i.e. 3.3553 ± 0.11 (ethanol) mg of Gallic acid equivalents (GAE)/g dry weight and 3.736 ± 0.001(ethanol) mg of quercetin equivalents (QE)/g dry weight, respectively, at conc. 0.125 mg/mL. Our finding provides evidence that all varieties of rose contain medicinally important bioactive compounds and justifies their use for treatment of different diseases.  相似文献   

17.
Five new triterpenoid saponins, including 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐Oβ‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐xylopyranosyl‐(1→4)‐α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)‐(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 1 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐O‐(6‐O‐acetyl)‐β‐d ‐glucopyranosyl‐(1→3)‐[β‐d ‐xylopyranosyl‐(1→4)]‐α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)‐(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 2 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐Oβ‐d ‐xylopyranosyl‐(1→4)‐α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)‐(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 3 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐Oβ‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐xylopyranosyl‐(1→4)‐α‐l ‐rhamnopyranosyl‐(1→2)‐[(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 4 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐O‐(6‐O‐acetyl)‐β‐d ‐glucopyranosyl‐(1→3)‐[β‐d ‐xylopyranosyl‐(1→4)]‐α‐l ‐rhamnopyranosyl‐(1→2)‐[(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 5 ) together with two known congeners, saponariosides A ( 6 ) and B ( 7 ) were isolated from the roots of Saponaria officinalis L. Their structures were elucidated by extensive spectroscopic methods, including 1D‐ (1H, 13C) and 2D‐NMR (DQF‐COSY, TOCSY, HSQC, and HMBC) experiments, HR‐ESI‐MS, and acid hydrolysis.  相似文献   

18.
19.
Guided by a hemostasis bioassay, seven terpene glycosides were isolated from the roots of Sanguisorba officinalis L. by silica gel column chromatography and preparative HPLC. On the grounds of chemical and spectroscopic methods, their structures were identified as citronellol-1-O-α-L-arabinofuranosyl-(1→6)-β-D-glucopyranoside (1), geraniol-1-O-α-L-arabinofuranosyl-(1→6)-β-D-glucopyranoside (2), geraniol-1-O-α-Larabinopyranosyl-(1→6)-β-D-glucopyranoside (3), 3β-[(α-L-arabinopyranosyl)oxy]-19α-hydroxyolean-12-en-28-oic acid 28-β-D-glucopyranoside (4), 3β-[(α-L-arabinopyranosyl)-oxy]-19α-hydroxyurs-12-en-28-oic acid 28-β-D-glucopyranoside (ziyu-glycoside I, 5), 3β,19α-hydroxyolean-12-en-28-oic acid 28-β-D-glucopyranoside (6) and 3β,19α-dihydroxyurs-12-en-28-oic acid 28-β-D-glucopyranoside (7). Compound 1 is a new mono-terpene glycoside and compounds 2, 3 and 5 were isolated from the Sanguisorba genus for the first time. Compounds 1–7 were assayed for their hemostatic activities with a Goat Anti-Human α2-plasmin inhibitor ELISA kit, and ziyu-glycoside I (5) showed the strongest hemostatic activity among the seven terpene glycosides. This is the first report that ziyu-glycoside Ι has strong hemostatic activity.  相似文献   

20.
A new allose-containing iridoid diglycoside, allobetonicoside ( 1 ), and a new acyl iridoid glucoside, 6-O-acetylmioporoside ( 2 ) have been isolated from the aerial parts of Betonica officinalis L. in addition to two known iridoid glucosides, acetylharpagide ( 3 ) and reptoside ( 4 ). Their structures have been determined by spectroscopic methods as well as by means of chemical evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号