首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of articular cartilage is separated into three layers of differently oriented collagen fibers, which is accompanied by a gradient of increasing glycosaminoglycan (GAG) and decreasing water concentration from the top layer towards the bone interface. The combined effect of these structural variations results in a change of the longitudinal and transverse relaxation times as a function of the distance from the cartilage surface. In this paper, this dependence is investigated at a magnetic field strength of 0.27 T with a one-dimensional depth resolution of 50 μm on bovine hip and stifle joint articular cartilage. By employing this method, advantage is taken of the increasing contrast of the longitudinal relaxation rate found at lower magnetic field strengths. Furthermore, evidence for an orientational dependence of relaxation times with respect to an axis normal to the surface plane is given, an observation that has recently been reported using high-field MRI and that was explained by preferential orientations of collagen bundles in each of the three cartilage zones. In order to quantify the extent of a further contrast mechanism and to estimate spatially dependent glycosaminoglycan concentrations, the data are supplemented by proton relaxation times that were acquired in bovine articular cartilage that was soaked in a 0.8 mM aqueous Gd++ solution.  相似文献   

2.
Relaxation rates in the rotating frame (R1rho) and spin-spin relaxation rates (R2) were measured in articular cartilage at various orientations of cartilage layer to the static magnetic field (B0), at various spin locking field strengths and at two different static magnetic field strengths. It was found that R1rho in the deep radial zone depended on the orientation of specimens in the magnet and decreased with increasing the spin locking field strength. In contrast, R1rho values in the transitional zone were nearly independent of the specimen orientation and the spin locking field strength. Measurements of the same specimens at 2.95 and 7.05 T showed an increase of R1rho and most R2 values with increasing B0. The inverse B0 dependence of some R2 values was probably due to a multicomponent character of the transverse magnetization decay. The experiments revealed that the dominant T1rho and T2 relaxation mechanism at B0 < or = 3 T is a dipolar interaction due to slow anisotropic motion of water molecules in the collagen matrix. On average, the contribution of scalar relaxation due to rapid proton exchange in femoral head cartilage at 2.95 T is about 6% or less of the total R1rho at the spin locking field of 1000 Hz.  相似文献   

3.
Kaolin clay samples were mixed with various amounts of Fe2O3 powder. The influence of this magnetic impurity on NMR relaxation and diffusion measurements on the water in this porous material was investigated. The NMR relaxation measurements showed a nearly mono-exponential decay, leading to the conclusion that the pore size distribution of the clay samples is either narrow and/or that the pores are interconnected very well. Both the longitudinal and the transverse relaxation rate depend linearly on the concentration of the Fe2O3 impurity. The NMR diffusion measurements revealed that the Fe2O3 causes internal magnetic field gradients that largely exceed the maximum external gradient that could be applied by our NMR apparatus (0.3 T/m). Additional SQUID measurements yielded the magnetization and magnetic susceptibility of the samples at the magnetic field strength used in the NMR measurements (0.8 T). A theoretical estimate of the internal magnetic field gradients leads to the conclusion that the water in the porous clay samples cannot be described by the commonly observed motional averaging regime. Probably an intermediate or a localization regime is induced by the large internal gradients, which are estimated to be on the order of 1 to 10 T/m in the pore volume and may exceed 1000 T/m at the pore surface.  相似文献   

4.
Transferring from laboratory frame to off-resonance rotating frame for the (1)H spin can compensate the relaxivity loss for paramagnetic agents at the magnetic field strength higher than 3 Tesla and enhance water relaxation rate constant significantly. A comprehensive theory for calculating the relaxation rate constants in the off-resonance rotating frame is described. This theory considers the contributions from both inner shell and outer shell water. The derived relaxation rate constants and relaxation enhancement efficiency as a function of the magnetic field strength and the effective field parameters are directly correlated to the structures, dynamics and environments of paramagnetic agents. To validate the theoretical predictions, we have measured the relaxation enhancement efficiency for a series of macromolecule conjugated gadolinium chelates at 9.4 Tesla. The experimental results confirmed the theoretical predictions. The theory also predicts the relaxation enhancement for T(2)-type paramagnetic agents at high magnetic fields. Promising fields of applications include situations where T(1)- or T(2)-type paramagnetic agents are used for labeling molecular/cellular events.  相似文献   

5.
Solid state 33S NMR spectra of a variety of inorganic sulfides have been obtained at magnetic field strengths of 4.7 and 17.6T. Spectra acquired with magic angle spinning show considerable improvements in sensitivity and resolution when compared with static spectra. Multiple factors are considered when analyzing the spectral line widths, including; magnetic field inhomogeneity, dipolar coupling, chemical shift anisotropy, chemical shift dispersion (CSD), T(2) relaxation, and quadrupolar coupling. Quadrupolar coupling was expected to be the dominant line broadening mechanism. However, for most of the samples CSD was the prevailing line broadening mechanism. Thus, for many of the metal sulfides studied at a high magnetic field strength, the line widths were actually larger than those observed in the spectra at low field. This is atypical in solid state 33S NMR. Solid state 33S spin-lattice (T(1)) and spin-spin (T(2)) relaxation rates were measured for the first time and are discussed. This information will be useful in future efforts to use 33S NMR in the compositional and structural analysis of sulfur containing materials.  相似文献   

6.
Transverse relaxation rate enhancement caused by magnetic particulates   总被引:2,自引:0,他引:2  
Magnetic particulates have been shown to be powerful transverse relaxation enhancers and are under consideration as an MR contrast agent for the detection of liver and spleen lesions. This work describes the magnetic properties of a commercially available magnetic particulate and a Monte Carlo simulation of the effect of these particles on the transverse relaxation rates of water protons for spin-echo experiments. From the simultations, empirical relations were developed to describe the dependence of the enhancement of particle size, and concentration as well as the diffusion constant of water and the pulse spacing of a Carr-Purcell-Meiboom-Gill pulse sequence used to measure the transverse relaxation time. The simulations are shown to agree with measurements of relaxation rates in agar samples containing the magnetic particulates.  相似文献   

7.
Perfusion-weighted imaging (PWI), using the method of arterial spin tagging, is strongly T(1)-dependent. This translates into a high field dependency of the perfusion signal intensity. In order to determine the expected signal improvement at higher magnetic fields we compared perfusion-weighted images in rat brain at 4.7 T and 7 T. Application of PWI to focal ischemia and functional activation of the brain and the use of two different anesthetics allowed the observation of a wide range of flow values. For all these (patho-)physiological conditions switching from 4.7 T to 7 T resulted in a significant increase of mean perfusion signal intensity by a factor of 2.96. The ratio of signal intensities of homotopic regions in the ipsi- and contralateral hemisphere was field-independent. The relative contribution of a) T(1) relaxation time, b) net magnetization, c) the Q-value of the receiver coils and d) the degree of adiabatic inversion to the signal improvement at higher field strength were discussed. It was shown that the main parameters contributing to the higher signal intensity are the lengthening of T(1) and the higher magnetization at the higher magnetic field.  相似文献   

8.
Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) have been applied to visualize physiological phenomena in plants and agricultural crops. Imaging sequences that result in contrast of a combination of parameters (e.g., proton density, ) cannot be used for a correct and unique interpretation of the results. In this study multiecho imaging together with monoexponential T2 decay fitting was applied to determine reliable proton density and T2 distributions over a mushroom. This was done at three magnetic field strengths (9.4, 4.7, and 0.47 T) because susceptibility inhomogeneities were suspected to influence the T2 relaxation times negatively, and because the inflences of susceptibility inhomogeneities increase with a rise in magnetic field strength. Electron microscopy was used to understand the different T2's for the various tissue types in mushrooms. Large influences of the tissue ultrastructure on the observed T2 relaxation times were found and explained. Based on the results, it is concluded that imaging mushrooms at low fields (around or below 0.47T) and short echo times has strong advantages over its high-field counterpart, especially with respect to quantitative imaging of the water balance of mushrooms. These conclusions indicate general validity whenever NMR imaging contrast is influenced by susceptibility inhomogeneities.  相似文献   

9.
Paramagnetic metal ions have shown promise as contrast agents for nuclear magnetic resonance (NMR) imaging. Their ability depends upon modification of the relaxation times (T1 and T2) through dipolar interactions. These interactions cause the effectiveness of the agents to be sensitive to the operating magnetic field. Studies are presented of the operating field dependence (frequency dispersion) of two metal-chelate complexes, Gd+3-ethylenediaminetetraacetate (EDTA) and Mn+2-EDTA, in a physiologically balanced electrolyte solution. Inversion recovery experiments were performed on two concentrations of each metal-chelate complex at five resonant frequencies. The frequency dispersion curves were similar in appearance for those of the corresponding aqueous solutions. The Mn+2 complex showed no unusual concentration effects. The Gd+3 complex showed an unexpected concentration dependence in the dispersion behavior. This is attributed to a difference in the dipolar correlation time between the two solutions. With its unique correlation time in electrolyte solutions, predictions of relaxation rate changes in studies in vivo may be easier for the Mn+2-EDTA complex.  相似文献   

10.
The 300 MHz (7 T) water proton resonances of suspensions of red blood cells containing paramagnetic deoxyhemoglobin or methemoglobin can be resolved into two broad lines assignable to intra- and extracellular water which undergoes rapid T2 relaxation by diffusion in magnetic field gradients induced by the intracellular paramagnets. The width of the resolved lines allowed an estimate of the maximum contribution that diffusion makes to T2 relaxation at 7 T. The dependence of the diffusion contribution on the square of the strength of the static magnetic field suggest that diffusion makes a small contribution to water proton T2 relaxation at 1.5 T compared to 7 T, and a negligible one at 0.5 T in early and intermediate hematomas containing deoxyhemoglobin or methemoglobin in intact red blood cells. At the lower field strengths, water proton T2 relaxation is apparently dominated by the rapid chemical exchange (mean lifetime tau = 10 msec) between the intra- and extracellular environments.  相似文献   

11.
A method for quantitative T2 imaging is presented which covers the large range of T2 values in plants (5 to 2000 ms) simultaneously. The transverse relaxation is characterized by phase-sensitive measurement of many echo images in a multi-echo magnetic resonance imaging sequence. Up to 1000 signal-containing echo images can be measured with an inter-echo time of 2.5 ms at 0.47 T. Separate images of water density and of T2 are obtained. Results on test samples, on the cherry tomato and on the stem of giant hogweed are presented. The effects of field strength, spatial resolution and echo time on the observed T2 values is discussed. The combination of a relatively low magnetic field strength, short echo time and medium pixel resolution results in excellent T2 contrast and in images hardly affected by susceptibility artifacts. The characterization of transverse relaxation by multi-echo image acquisition opens a new route for studies of water balance in plants.  相似文献   

12.
A theory of spectral parameters, dynamic conductivity, and relative integrated emission intensity has been proposed in the model of the open resonant-tunneling structure as a separate cascade of a quantum cascade laser in a transverse magnetic field. It has been shown that, according to the experiment by Blaser and colleagues, as the magnetic field strength increases to 8 T, the emission peak shifts to higher energies, while its relative integrated intensity in the strength range of 0–14 T decreases abruptly.  相似文献   

13.
Using proton NMR relaxometry in the kilohertz frequency range, we study dynamics of 5CB liquid crystal molecules dispersed in the form of spherical microdroplets in a PDLC material. The focus of the study is the spin-lattice relaxation in the rotating frame, T1rho(-1), measured above the nematic-isotropic transition TNI. We show that the relaxation rate T1rho(-1)--when induced by uniform molecular translational diffusion in a spherical cavity--depends on the strength of the rotating magnetic field as T1rho(-1) proportional to omega1(-alpha) where alpha varies between 0.7 and 1, depending on the thickness of the ordered surface layer. This relaxation mechanism governs mainly the transverse spin relaxation, whereas the measurements of the frequency and temperature dependence of T1rho(-1) indicate a strong effect of slowing-down of molecular translational diffusion in contact with the polymer surface and yield the average dwell-time of molecules at the surface of the order 10(-5) s.  相似文献   

14.
Concentrated oil-in-water emulsions have been studied using nuclear magnetic resonance relaxometry (NMRR). To characterize the size distribution of water droplets, correlations between NMRR data and integral droplets diameters have been established and used for data interpretation. The dependences of parameters of emulsion components have been obtained from proton relaxation data after rotating magnetic field application and sedimentation.  相似文献   

15.
In a gas-filled material like the lung parenchyma, the transverse relaxation time (T2) for 3He is shortened by the deposition of magnetic microspheres and rapid molecular diffusion through induced field distortions. Here, this unique relaxation process is described theoretically and predicted T2-shortening is validated using pressurized 3He gas in a foam model of alveolar airways. Results demonstrate that: (1) significant T2-shortening is induced by microsphere deposition, (2) shortened 3He T2s are accurately predicted, and (3) measured relaxation times are exploitable for quantifying local deposition patterns. Based on these findings the feasibility of imaging inhaled particulates in vivo with hyperpolarized 3He is examined and performance projections are formulated.  相似文献   

16.
Magnetic relaxation in solids may be complicated by the creation and loss of dipolar order at finite rates. In tissues the molecular and spin dynamics may be significantly different because of the relatively high concentration of water. We have applied a modified Jeneer-Broekaert pulse sequence to measure dipolar relaxation rates in both dry and hydrated protein systems that may serve as magnetic models for tissue. In lyophilized and dry serum albumin, the dipolar relaxation time, T(1D) is on the order of 1 ms and is consistent with earlier reports. When hydrated by deuterium oxide, the dipolar relaxation times measured were on the order of tens of microseconds. When paramagnetic centers are included in the protein, the Jeneer-Broekaert echo decay times became the order of the decay time for transverse magnetization, i.e., the order of 10 micros or less. In the hydrated or paramagnetic systems, the dipolar relaxation times are too short to require inclusion in the quantitative analysis of magnetization transfer experiments.  相似文献   

17.
Multiple-magnetic field (9.4, 14.1 and 21.1 T) measurements of (13)C spin-lattice and spin-spin relaxation rates, the heteronuclear Overhauser enhancement and cross-correlated relaxation rates (CCRRs) in the methylene groups are reported for gamma-cyclodextrin in water/dimethylsulfoxide solution at 323 and 343K. The CCRRs are obtained from differences in the initial relaxation rates of the components of the CH(2) triplet in the (13)C spectra. The relaxation data are analyzed using the Lipari-Szabo approach and a novel modification of the two-site jump model. According to the latter model, inclusion of the dipolar (CH,CH(')) cross-correlated longitudinal and transverse relaxation is important for estimating the rate of the conformational jumps in the hydroxymethyl group. Using the dynamic information from the jump model, we have also used the differences in the initial relaxation rates for the triplet components to estimate the anisotropy of the chemical shielding tensor.  相似文献   

18.
《Current Applied Physics》2014,14(1):122-126
The molecular dynamics of the homogeneously aligned nematic liquid crystal mixture E7 subject to a magnetic field has been studied. The dielectric spectra study has revealed a low bias magnetic field effect on the evolution of dielectric relaxation spectra occurred at lower (∼kHz) (δ-relaxation) and higher (∼MHz) (α-relaxation) frequency regions. The complex electric modulus, which converted from experimental dielectric spectra, has been analyzed with theoretical model of Debye relaxation. The obtained fitting parameters of relaxation time and strength of dielectric components are shown to vary systematically with the strength of applied magnetic field. A microscopic molecular dynamic model has been proposed to describe the two-step variation of E7 molecular under the bias magnetic field. The results provide implication for magneto-modulation of liquid crystal molecular dynamics under the bias magnetic field.  相似文献   

19.
The relaxation behavior (including the rising and falling relaxation processes) of the transmitted light after the magnetic fluid thin films under longitudinal and transverse magnetic fields is investigated, respectively. The physical mechanisms of the two different relaxation processes are discussed. The experimental data of the rising and falling relaxation processes are fitted by using two exponential functions to achieve the rising and falling response times. The relationship between the response time and the strength of applied magnetic field, the concentration of magnetic fluid is studied experimentally. The modulation depth of the transmitted light is researched quantificationally and the deepest modulation depth is obtained with Sample 3 (with volume fraction of 5.62%) in our experiments.  相似文献   

20.
Ferrite superparamagnetic (SPM) nanoparticles in aqueous suspensions shorten the nuclear magnetic relaxation of water protons. For transverse relaxation, that effect is enhanced when agglomeration of elementary SPM cores occurs, because of an increase of the secular part of the transverse relaxivity. On the contrary, clustering weakens the T1-shortening, in agreement with the prediction of a new model for diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号