首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let G=(V,E) be a simple graph. A subset SV is a dominating set of G, if for any vertex uV-S, there exists a vertex vS such that uvE. The domination number of G, γ(G), equals the minimum cardinality of a dominating set. A Roman dominating function on graph G=(V,E) is a function f:V→{0,1,2} satisfying the condition that every vertex v for which f(v)=0 is adjacent to at least one vertex u for which f(u)=2. The weight of a Roman dominating function is the value f(V)=∑vVf(v). The Roman domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman dominating function on G. In this paper, for any integer k(2?k?γ(G)), we give a characterization of graphs for which γR(G)=γ(G)+k, which settles an open problem in [E.J. Cockayne, P.M. Dreyer Jr, S.M. Hedetniemi et al. On Roman domination in graphs, Discrete Math. 278 (2004) 11-22].  相似文献   

2.
A function f:V(G)→{0,1,2} is a Roman dominating function if every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. A function f:V(G)→{0,1,2} with the ordered partition (V0,V1,V2) of V(G), where Vi={vV(G)∣f(v)=i} for i=0,1,2, is a unique response Roman function if xV0 implies |N(x)∩V2|≤1 and xV1V2 implies that |N(x)∩V2|=0. A function f:V(G)→{0,1,2} is a unique response Roman dominating function if it is a unique response Roman function and a Roman dominating function. The unique response Roman domination number of G, denoted by uR(G), is the minimum weight of a unique response Roman dominating function. In this paper we study the unique response Roman domination number of graphs and present bounds for this parameter.  相似文献   

3.
A Roman dominating function on a graph G is a function f : V(G) → {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight of a Roman dominating function is the value ${f(V(G))=\sum_{u \in V(G)}f(u)}$ . The Roman domination number, γ R (G), of G is the minimum weight of a Roman dominating function on G. In this paper, we study graphs for which contracting any edge decreases the Roman domination number.  相似文献   

4.
A Roman dominating function on a graph G = (VE) is a function f : V ? {0, 1, 2}f : V \rightarrow \{0, 1, 2\} satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function is the value w(f) = ?v ? V f(v)w(f) = \sum_{v\in V} f(v). The Roman domination number of a graph G, denoted by gR(G)_{\gamma R}(G), equals the minimum weight of a Roman dominating function on G. The Roman domination subdivision number sdgR(G)sd_{\gamma R}(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the Roman domination number. In this paper, first we establish upper bounds on the Roman domination subdivision number for arbitrary graphs in terms of vertex degree. Then we present several different conditions on G which are sufficient to imply that $1 \leq sd_{\gamma R}(G) \leq 3$1 \leq sd_{\gamma R}(G) \leq 3. Finally, we show that the Roman domination subdivision number of a graph can be arbitrarily large.  相似文献   

5.
A dominating broadcast on a graph G = (V, E) is a function f: V → {0, 1, ..., diam G} such that f(v) ≤ e(v) (the eccentricity of v) for all vV and such that each vertex is within distance f(v) from a vertex v with f(v) > 0. The cost of a broadcast f is σ(f) = Σ vV f(v), and the broadcast number λ b (G) is the minimum cost of a dominating broadcast. A set X ? V(G) is said to be irredundant if each xX dominates a vertex y that is not dominated by any other vertex in X; possibly y = x. The irredundance number ir (G) is the cardinality of a smallest maximal irredundant set of G. We prove the bound λb(G) ≤ 3 ir(G)/2 for any graph G and show that equality is possible for all even values of ir (G). We also consider broadcast domination as an integer programming problem, the dual of which provides a lower bound for λb.  相似文献   

6.
《Quaestiones Mathematicae》2013,36(6):749-757
Abstract

A set S of vertices is a total dominating set of a graph G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set is the total domination number γt(G). A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u with f (u)=0 is adjacent to at least one vertex v of G for which f (v)=2. The minimum of f (V (G))=∑u ∈ V (G) f (u) over all such functions is called the Roman domination number γR (G). We show that γt(G) ≤ γR (G) with equality if and only if γt(G)=2γ(G), where γ(G) is the domination number of G. Moreover, we characterize the extremal graphs for some graph families.  相似文献   

7.
A Roman dominating function on a graph G is a function f : V(G) → {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight of a Roman dominating function is the value f (V(G)) = ?u ? V(G) f (u){f (V(G)) = \sum_{u\in V(G)} f (u)}. The Roman domination number, γ R (G), of G is the minimum weight of a Roman dominating function on G. The Roman bondage number b R (G) of a graph G with maximum degree at least two is the minimum cardinality of all sets E í E(G){E^{\prime} \subseteq E(G)} for which γ R (GE′) > γ R (G). In this paper we present different bounds on the Roman bondage number of planar graphs.  相似文献   

8.
A Roman dominating function of a graph G=(V,E) is a function f:V→{0,1,2} such that every vertex x with f(x)=0 is adjacent to at least one vertex y with f(y)=2. The weight of a Roman dominating function is defined to be f(V)=∑xVf(x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we first answer an open question mentioned in [E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi, S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11-22] by showing that the Roman domination number of an interval graph can be computed in linear time. We then show that the Roman domination number of a cograph (and a graph with bounded cliquewidth) can be computed in linear time. As a by-product, we give a characterization of Roman cographs. It leads to a linear-time algorithm for recognizing Roman cographs. Finally, we show that there are polynomial-time algorithms for computing the Roman domination numbers of -free graphs and graphs with a d-octopus.  相似文献   

9.
A Roman dominating function of a graph G is a labeling f:V(G)?{0,1,2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑vV(G)f(v) over such functions. A Roman dominating function of G of weight γR(G) is called a γR(G)-function. A Roman dominating function f:V?{0,1,2} can be represented by the ordered partition (V0,V1,V2) of V, where Vi={vVf(v)=i}. Cockayne et al. [E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi, S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11-22] posed the following question: What can we say about the minimum and maximum values of |V0|,|V1|,|V2| for a γR-function f=(V0,V1,V2) of a graph G? In this paper we first show that for any connected graph G of order n≥3, , where γ(G) is the domination number of G. Also we prove that for any γR-function f=(V0,V1,V2) of a connected graph G of order n≥3, , and .  相似文献   

10.
Let G be a finite and simple graph with vertex set V(G), and let f:V(G)→{−1,1} be a two-valued function. If ∑xN[v]f(x)≥1 for each vV(G), where N[v] is the closed neighborhood of v, then f is a signed dominating function on G. A set {f1,f2,…,fd} of signed dominating functions on G with the property that for each xV(G), is called a signed dominating family (of functions) on G. The maximum number of functions in a signed dominating family on G is the signed domatic number on G. In this paper, we investigate the signed domatic number of some circulant graphs and of the torus Cp×Cq.  相似文献   

11.
Given a graph G, a proper labelingf of G is a one-to-one function from V(G) onto {1,2,…,|V(G)|}. For a proper labeling f of G, the profile widthwf(v) of a vertex v is the minimum value of f(v)−f(x), where x belongs to the closed neighborhood of v. The profile of a proper labelingfofG, denoted by Pf(G), is the sum of all the wf(v), where vV(G). The profile ofG is the minimum value of Pf(G), where f runs over all proper labeling of G. In this paper, we show that if the vertices of a graph G can be ordered to satisfy a special neighborhood property, then so can the graph G×Qn. This can be used to determine the profile of Qn and Km×Qn.  相似文献   

12.
Let G=(V,E) be a graph. A function f:V→{−1,+1} defined on the vertices of G is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. A signed total dominating function f is minimal if there does not exist a signed total dominating function g, fg, for which g(v)≤f(v) for every vV. The weight of a signed total dominating function is the sum of its function values over all vertices of G. The upper signed total domination number of G is the maximum weight of a minimal signed total dominating function on G. In this paper we present a sharp upper bound on the upper signed total domination number of an arbitrary graph. This result generalizes previous results for regular graphs and nearly regular graphs.  相似文献   

13.
An edge eE(G) dominates a vertex vV(G) if e is incident with v or e is incident with a vertex adjacent to v. An edge-vertex dominating set of a graph G is a set D of edges of G such that every vertex of G is edge-vertex dominated by an edge of D. The edge-vertex domination number of a graph G is the minimum cardinality of an edge-vertex dominating set of G. A subset D?V(G) is a total dominating set of G if every vertex of G has a neighbor in D. The total domination number of G is the minimum cardinality of a total dominating set of G. We characterize all trees with total domination number equal to edge-vertex domination number plus one.  相似文献   

14.
LetG(V, E) be a simple graph, and letf be an integer function onV with 1 ≤f(v) ≤d(v) to each vertexvV. An f-edge cover-coloring of a graphG is a coloring of edge setE such that each color appears at each vertexvV at leastf(v) times. Thef-edge cover chromatic index ofG, denoted by χ′ fc (G), is the maximum number of colors such that anf-edge cover-coloring ofG exists. Any simple graphG has anf-edge cover chromatic index equal to δf or δ f - 1, where $\delta _f = \mathop {\min }\limits_{\upsilon \in V} \{ \left\lfloor {\frac{{d(v)}}{{f(v)}}} \right\rfloor \} $ . LetG be a connected and not complete graph with χ′ fc (G)=δ f-1, if for eachu, vV and e =uv ?E, we have ÷ fc (G + e) > ÷ fc (G), thenG is called anf-edge covered critical graph. In this paper, some properties onf-edge covered critical graph are discussed. It is proved that ifG is anf-edge covered critical graph, then for eachu, vV and e =uv ?E there existsw ∈ {u, v } withd(w) ≤ δ f (f(w) + 1) - 2 such thatw is adjacent to at leastd(w) - δ f + 1 vertices which are all δ f -vertex inG.  相似文献   

15.
A dominating setD of a graph G is a subset of V(G) such that for every vertex vV(G), either vD or there exists a vertex uD that is adjacent to v in G. Dominating sets of small cardinality are of interest. A connected dominating setC of a graph G is a dominating set of G such that the subgraph induced by the vertices of C in G is connected. A weakly-connected dominating setW of a graph G is a dominating set of G such that the subgraph consisting of V(G) and all edges incident with vertices in W is connected. In this paper we present several algorithms for finding small connected dominating sets and small weakly-connected dominating sets of regular graphs. We analyse the average-case performance of these heuristics on random regular graphs using differential equations, thus giving upper bounds on the size of a smallest connected dominating set and the size of a smallest weakly-connected dominating set of random regular graphs.  相似文献   

16.
Let G be a simple graph without isolated vertices with vertex set V(G) and edge set E(G). A function f:E(G)?{−1,1} is said to be a signed star dominating function on G if ∑eE(v)f(e)≥1 for every vertex v of G, where E(v)={uvE(G)∣uN(v)}. A set {f1,f2,…,fd} of signed star dominating functions on G with the property that for each eE(G), is called a signed star dominating family (of functions) on G. The maximum number of functions in a signed star dominating family on G is the signed star domatic number of G, denoted by dSS(G).In this paper we study the properties of the signed star domatic number dSS(G). In particular, we determine the signed domatic number of some classes of graphs.  相似文献   

17.
Let G = (V (G),E(G)) be a simple graph. A subset S of V (G) is a dominating set of G if, for any vertex vV (G) — S, there exists some vertex u ∈ S such that uv ∈ E(G). The domination number, denoted by γ(G), is the cardinality of a minimal dominating set of G. There are several types of domination parameters depending upon the nature of domination and the nature of dominating set. These parameters are bondage, reinforcement, strong-weak domination, strong-weak bondage numbers. In this paper, we first investigate the strong-weak domination number of middle graphs of a graph. Then several results for the bondage, strong-weak bondage number of middle graphs are obtained.  相似文献   

18.
A function f:V(G)→{-1,0,1} defined on the vertices of a graph G is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. An MTDF f is minimal if there does not exist an MTDF g:V(G)→{-1,0,1}, fg, for which g(v)?f(v) for every vV(G). The weight of an MTDF is the sum of its function values over all vertices. The minus total domination number of G is the minimum weight of an MTDF on G, while the upper minus domination number of G is the maximum weight of a minimal MTDF on G. In this paper we present upper bounds on the upper minus total domination number of a cubic graph and a 4-regular graph and characterize the regular graphs attaining these upper bounds.  相似文献   

19.
Let k ≥ 2 be an integer. A function f: V(G) → {?1, 1} defined on the vertex set V(G) of a graph G is a signed k-independence function if the sum of its function values over any closed neighborhood is at most k ? 1. That is, Σ xN[v] f(x) ≤ k ? 1 for every vV(G), where N[v] consists of v and every vertex adjacent to v. The weight of a signed k-independence function f is w(f) = Σ vV(G) f(v). The maximum weight w(f), taken over all signed k-independence functions f on G, is the signed k-independence number α s k (G) of G. In this work, we mainly present upper bounds on α s k (G), as for example α s k (G) ≤ n ? 2?(Δ(G) + 2 ? k)/2?, and we prove the Nordhaus-Gaddum type inequality $\alpha _S^k \left( G \right) + \alpha _S^k \left( {\bar G} \right) \leqslant n + 2k - 3$ , where n is the order, Δ(G) the maximum degree and $\bar G$ the complement of the graph G. Some of our results imply well-known bounds on the signed 2-independence number.  相似文献   

20.
We say that a function f:V→{0,1,…,diam(G)} is a broadcast if for every vertex vV, f(v)?e(v), where diam(G) denotes the diameter of G and e(v) denotes the eccentricity of v. The cost of a broadcast is the value . In this paper we introduce and study the minimum and maximum costs of several types of broadcasts in graphs, including dominating, independent and efficient broadcasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号