首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The girth pair of a graph gives the length of a shortest odd and a shortest even cycle. The existence of regular graphs with given degree and girth pair was proved by Harary and Kovács [Regular graphs with given girth pair, J Graph Theory 7 ( 1 ), 209–218]. A (δ, g)‐cage is a smallest δ‐regular graph with girth g. For all δ ≥ 3 and odd girth g ≥ 5, Harary and Kovács conjectured the existence of a (δ,g)‐cage that contains a cycle of length g + 1. In the main theorem of this article we present a lower bound on the order of a δ‐regular graph with odd girth g ≥ 5 and even girth hg + 3. We use this bound to show that every (δ,g)‐cage with δ ≥ 3 and g ∈ {5,7} contains a cycle of length g + 1, a result that can be seen as an extension of the aforementioned conjecture by Harary and Kovács for these values of δ, g. Moreover, for every odd g ≥ 5, we prove that the even girth of all (δ,g)‐cages with δ large enough is at most (3g ? 3)/2. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 153–163, 2007  相似文献   

3.
Harary and Kovacs [Smallest graphs with given girth pair, Caribbean J. Math. 1 (1982) 24-26] have introduced a generalization of the standard cage question—r-regular graphs with given odd and even girth pair. The pair (ω,ε) is the girth pair of graph G if the shortest odd and even cycles of G have lengths ω and ε, respectively, and denote the number of vertices in the (r,ω,ε)-cage by f(r,ω,ε). Campbell [On the face pair of cubic planar graph, Utilitas Math. 48 (1995) 145-153] looks only at planar graphs and considers odd and even faces rather than odd and even cycles. He has shown that f(3,ω,4)=2ω and the bounds for the left cases. In this paper, we show the values of f(r,ω,ε) for the left cases where (r,ω,ε)∈{(3,3,ε),(4,3,ε),(5,3,ε), (3,5,ε)}.  相似文献   

4.
The odd girth of a graph G gives the length of a shortest odd cycle in G. Let ƒ(k, g) denote the smallest n such that there exists a k-regular graph of order n and odd girth g. It is known that ƒ(k, g) ≥ kg/2 and that ƒ(k, g) = kg/2 if k is even. The exact values of ƒ(k, g) are also known if k = 3 or g = 5. Let xe denote the smallest even integer no less than x, δ(g) = (−1)g − 1/2, and s(k) = min {p + q | k = pq, where p and q are both positive integers}. It is proved that if k ≥ 5 and g ≥ 7 are both odd, then [formula] with the exception that ƒ(5, 7) = 20.  相似文献   

5.
In this paper, first we prove that any graph G is 2-connected if diam(G)≤g−1 for even girth g, and for odd girth g and maximum degree Δ≤2δ−1 where δ is the minimum degree. Moreover, we prove that any graph G of diameter diam(G)≤g−2 satisfies that (i) G is 5-connected for even girth g and Δ≤2δ−5, and (ii) G is super-κ for odd girth g and Δ≤3δ/2−1.  相似文献   

6.
The odd girth of a graph G is the length of a shortest odd cycle in G. Let d(n, g) denote the largest k such that there exists a k-regular graph of order n and odd girth g. It is shown that dn, g ≥ 2|n/g≥ if n ≥ 2g. As a consequence, we prove a conjecture of Pullman and Wormald, which says that there exists a 2j-regular graph of order n and odd girth g if and only if ngj, where g ≥ 5 is odd and j ≥ 2. A different variation of the problem is also discussed.  相似文献   

7.
In this paper we consider the following problem: Over the class of all simple connected unicyclic graphs on n vertices with girth g (n, g being fixed), which graph minimizes the Laplacian spectral radius? Let U n,g be the lollipop graph obtained by appending a pendent vertex of a path on n ? g (n > g) vertices to a vertex of a cycle on g ? 3 vertices. We prove that the graph U n,g uniquely minimizes the Laplacian spectral radius for n ? 2g ? 1 when g is even and for n ? 3g ? 1 when g is odd.  相似文献   

8.
Cayley Cages     
A (k,g)-Cayley cage is a k-regular Cayley graph of girth g and smallest possible order. We present an explicit construction of (k,g)-Cayley graphs for all parameters k≥2 and g≥3 and generalize this construction to show that many well-known small k-regular graphs of girth g can be constructed in this way. We also establish connections between this construction and topological graph theory, and address the question of the order of (k,g)-Cayley cages.  相似文献   

9.
A (k, g)-cage is a graph that has the least number of vertices among all k-regular graphs with girth g. It has been conjectured (Fu et?al. in J. Graph Theory, 24:187?C191, 1997) that all (k, g)-cages are k-connected for every k??? 3. A k-connected graph G is called superconnected if every k-cutset S is the neighborhood of some vertex. Moreover, if G?S has precisely two components, then G is called tightly superconnected. In this paper, we prove that every (4, g)-cage is tightly superconnected when g ???11 is odd.  相似文献   

10.
Let f(r) denote the smallest number of points in a non-bipartite r-regular graph of girth 4. It is known that f(r) ≥ 5r2 and that f(r) = 5r2 if r is even. It is proved that f(r) ~ 5r2 and exact values for f(r) are provided for odd integers of the form r = 4n ? 1. Tight bounds for f(r) for odd integers of the form r= 4n + 1 are given.  相似文献   

11.
A graph is superconnected, for short super-κ, if all minimum vertex-cuts consist of the vertices adjacent with one vertex. In this paper we prove for any r-regular graph of diameter D and odd girth g that if Dg−2, then the graph is super-κ when g≥5 and a complete graph otherwise.  相似文献   

12.
13.
Let G=G(n) be a graph on n vertices with girth at least g and maximum degree bounded by some absolute constant Δ. Assign to each vertex v of G a list L(v) of colors by choosing each list independently and uniformly at random from all 2-subsets of a color set C of size σ(n). In this paper we determine, for each fixed g and growing n, the asymptotic probability of the existence of a proper coloring φ such that φ(v)∈L(v) for all vV(G). In particular, we show that if g is odd and σ(n)=ω(n1/(2g−2)), then the probability that G has a proper coloring from such a random list assignment tends to 1 as n. Furthermore, we show that this is best possible in the sense that for each fixed odd g and each ng, there is a graph H=H(n,g) with bounded maximum degree and girth g, such that if σ(n)=o(n1/(2g−2)), then the probability that H has a proper coloring from such a random list assignment tends to 0 as n. A corresponding result for graphs with bounded maximum degree and even girth is also given. Finally, by contrast, we show that for a complete graph on n vertices, the property of being colorable from random lists of size 2, where the lists are chosen uniformly at random from a color set of size σ(n), exhibits a sharp threshold at σ(n)=2n.  相似文献   

14.
The odd girth of a graph G gives the length of a shortest odd cycle in G. Let f(k,g) denote the smallest n such that there exists a k-regular graph of order n and odd girth g. The exact values of f(k,g) are determined if one of the following holds:
  • (i) k > 2g ?5 and k is a prime number,
  • (ii) k > (2?(g + 1)/4? ?1)2, and
  • (iiii) k is a perfect square.
  相似文献   

15.
A (δ, g)-cage is a δ-regular graph with girth g and with the least possible number of vertices. In this paper, we show that all (δ, g)-cages with odd girth g ≥ 9 are r-connected, where (r − 1)2δ + $ \sqrt \delta $ \sqrt \delta − 2 < r 2 and all (δ, g)-cages with even girth g ≥ 10 are r-connected, where r is the largest integer satisfying $ \frac{{r\left( {r - 1} \right)^2 }} {4} + 1 + 2r\left( {r - 1} \right) \leqslant \delta $ \frac{{r\left( {r - 1} \right)^2 }} {4} + 1 + 2r\left( {r - 1} \right) \leqslant \delta . These results support a conjecture of Fu, Huang and Rodger that all (δ, g)-cages are δ-connected.  相似文献   

16.
17.
A geometric graph is a graph embedded in the plane in such a way that vertices correspond to points in general position and edges correspond to segments connecting the appropriate points. A noncrossing Hamiltonian path in a geometric graph is a Hamiltonian path which does not contain any intersecting pair of edges. In the paper, we study a problem asked by Micha Perles: determine the largest number h(n) such that when we remove any set of h(n) edges from any complete geometric graph on n vertices, the resulting graph still has a noncrossing Hamiltonian path. We prove that . We also establish several results related to special classes of geometric graphs. Let h1(n) denote the largest number such that when we remove edges of an arbitrary complete subgraph of size at most h1(n) from a complete geometric graph on n vertices the resulting graph still has a noncrossing Hamiltonian path. We prove that . Let h2(n) denote the largest number such that when we remove an arbitrary star with at most h2(n) edges from a complete geometric graph on n vertices the resulting graph still has a noncrossing Hamiltonian path. We show that h2(n)=⌈n/2⌉-1. Further we prove that when we remove any matching from a complete geometric graph the resulting graph will have a noncrossing Hamiltonian path.  相似文献   

18.
19.
For an oriented graph D, let ID[u,v] denote the set of all vertices lying on a u-v geodesic or a v-u geodesic. For SV(D), let ID[S] denote the union of all ID[u,v] for all u,vS. Let [S]D denote the smallest convex set containing S. The geodetic number g(D) of an oriented graph D is the minimum cardinality of a set S with ID[S]=V(D) and the hull number h(D) of an oriented graph D is the minimum cardinality of a set S with [S]D=V(D). For a connected graph G, let O(G) be the set of all orientations of G, define g(G)=min{g(D):DO(G)}, g+(G)=max{g(D):DO(G)}, h(G)=min{h(D):DO(G)}, and h+(G)=max{h(D):DO(G)}. By the above definitions, h(G)≤g(G) and h+(G)≤g+(G). In the paper, we prove that g(G)<h+(G) for a connected graph G of order at least 3, and for any nonnegative integers a and b, there exists a connected graph G such that g(G)−h(G)=a and g+(G)−h+(G)=b. These results answer a problem of Farrugia in [A. Farrugia, Orientable convexity, geodetic and hull numbers in graphs, Discrete Appl. Math. 148 (2005) 256-262].  相似文献   

20.
A (k;g)‐cage is a k‐regular graph with girth g and with the least possible number of vertices. In this paper, we prove that (k;g)‐cages are k‐edge‐connected if g is even. Earlier, Wang, Xu, and Wang proved that (k;g)‐cages are k‐edge‐connected if g is odd. Combining our results, we conclude that the (k;g)‐cages are k‐edge‐connected. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 219–227, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号