首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The relationship ρL(G)≤ρ(G)≤γ(G) between the lower packing number ρL(G), the packing number ρ(G) and the domination number γ(G) of a graph G is well known. In this paper we establish best possible bounds on the ratios of the packing numbers of any (connected) graph to its six domination-related parameters (the lower and upper irredundance numbers ir and IR, the lower and upper independence numbers i and β, and the lower and upper domination numbers γ and Γ). In particular, best possible constants aθ, bθ, cθ and dθ are found for which the inequalities and hold for any connected graph G and all θ∈{ir,γ,i,β,Γ,IR}. From our work it follows, for example, that and for any connected graph G, and that these inequalities are best possible.  相似文献   

2.
An edge of a 5-connected graph is said to be contractible if the contraction of the edge results in a 5-connected graph. A 5-connected graph with no contractible edge is said to be contraction critically 5-connected. Let G be a contraction critically 5-connected graph and let H be a component of the subgraph induced by the set of degree 5 vertices of G. Then it is known that |V(H)|≥4. We prove that if |V(H)|=4, then , where stands for the graph obtained from K4 by deleting one edge. Moreover, we show that either |NG(V(H))|=5 or |NG(V(H))|=6 and around H there is one of two specified structures called a -configuration and a split -configuration.  相似文献   

3.
The bandwidth B(G) of a graph G is the minimum of the quantity max{|f(x)-f(y)|:xyE(G)} taken over all proper numberings f of G. The strong product of two graphs G and H, written as G(SP)H, is the graph with vertex set V(GV(H) and with (u1,v1) adjacent to (u2,v2) if one of the following holds: (a) u1 and v1 are adjacent to u2 and v2 in G and H, respectively, (b) u1 is adjacent to u2 in G and v1=v2, or (c) u1=u2 and v1 is adjacent to v2 in H. In this paper, we investigate the bandwidth of the strong product of two connected graphs. Let G be a connected graph. We denote the diameter of G by D(G). Let d be a positive integer and let x,y be two vertices of G. Let denote the set of vertices v so that the distance between x and v in G is at most d. We define δd(G) as the minimum value of over all vertices x of G. Let denote the set of vertices z such that the distance between x and z in G is at most d-1 and z is adjacent to y. We denote the larger of and by . We define η(G)=1 if G is complete and η(G) as the minimum of over all pair of vertices x,y of G otherwise. Let G and H be two connected graphs. Among other results, we prove that if δD(H)(G)?B(G)D(H)+1 and B(H)=⌈(|V(H)|+η(H)-2)/D(H)⌉, then B(G(SP)H)=B(G)|V(H)|+B(H). Moreover, we show that this result determines the bandwidth of the strong product of some classes of graphs. Furthermore, we study the bandwidth of the strong product of power of paths with complete bipartite graphs.  相似文献   

4.
Let G=(V,E) be a simple graph with vertex degrees d1,d2,…,dn. The Randi? index R(G) is equal to the sum over all edges (i,j)∈E of weights . We prove several conjectures, obtained by the system AutoGraphiX, relating R(G) and the chromatic number χ(G). The main result is χ(G)≤2R(G). To prove it, we also show that if vV is a vertex of minimum degree δ of G, Gv the graph obtained from G by deleting v and all incident edges, and Δ the maximum degree of G, then .  相似文献   

5.
A (d,1)-total labelling of a graph G assigns integers to the vertices and edges of G such that adjacent vertices receive distinct labels, adjacent edges receive distinct labels, and a vertex and its incident edges receive labels that differ in absolute value by at least d. The span of a (d,1)-total labelling is the maximum difference between two labels. The (d,1)-total number, denoted , is defined to be the least span among all (d,1)-total labellings of G. We prove new upper bounds for , compute some for complete bipartite graphs Km,n, and completely determine all for d=1,2,3. We also propose a conjecture on an upper bound for in terms of the chromatic number and the chromatic index of G.  相似文献   

6.
7.
Let be the signed edge domination number of G. In 2006, Xu conjectured that: for any 2-connected graph G of order n(n≥2), . In this article we show that this conjecture is not true. More precisely, we show that for any positive integer m, there exists an m-connected graph G such that . Also for every two natural numbers m and n, we determine , where Km,n is the complete bipartite graph with part sizes m and n.  相似文献   

8.
Let G be a graph of order n and circumference c(G). Let be the complement of G. We prove that and show sharpness of this bound.  相似文献   

9.
Daqing Yang 《Discrete Mathematics》2009,309(13):4614-4623
Let be a directed graph. A transitive fraternal augmentation of is a directed graph with the same vertex set, including all the arcs of and such that for any vertices x,y,z,
1.
if and then or (fraternity);
2.
if and then (transitivity).
In this paper, we explore some generalization of the transitive fraternal augmentations for directed graphs and its applications. In particular, we show that the 2-coloring number col2(G)≤O(1(G)0(G)2), where k(G) (k≥0) denotes the greatest reduced average density with depth k of a graph G; we give a constructive proof that k(G) bounds the distance (k+1)-coloring number colk+1(G) with a function f(k(G)). On the other hand, k(G)≤(col2k+1(G))2k+1. We also show that an inductive generalization of transitive fraternal augmentations can be used to study nonrepetitive colorings of graphs.  相似文献   

10.
Let k be a positive integer and G be a connected graph. This paper considers the relations among four graph theoretical parameters: the k-domination number γk(G), the connected k-domination number ; the k-independent domination number and the k-irredundance number irk(G). The authors prove that if an irk-set X is a k-independent set of G, then , and that for k?2, if irk(G)=1, if irk(G) is odd, and if irk(G) is even, which generalize some known results.  相似文献   

11.
A set S of vertices of a graph G=(V,E) with no isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination numberγt(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision numbersdγt(G) is the minimum number of edges that must be subdivided in order to increase the total domination number. We consider graphs of order n?4, minimum degree δ and maximum degree Δ. We prove that if each component of G and has order at least 3 and , then and if each component of G and has order at least 2 and at least one component of G and has order at least 3, then . We also give a result on stronger than a conjecture by Harary and Haynes.  相似文献   

12.
Given a finite set of 2-dimensional points PR2 and a positive real d, a unit disk graph, denoted by (P,d), is an undirected graph with vertex set P such that two vertices are adjacent if and only if the Euclidean distance between the pair is less than or equal to d. Given a pair of non-negative integers m and n, P(m,n) denotes a subset of 2-dimensional triangular lattice points defined by where . Let Tm,n(d) be a unit disk graph defined on a vertex set P(m,n) and a positive real d. Let be the kth power of Tm,n(1).In this paper, we show necessary and sufficient conditions that [ is perfect] and/or [ is perfect], respectively. These conditions imply polynomial time approximation algorithms for multicoloring (Tm,n(d),w) and .  相似文献   

13.
K.L. Ng 《Discrete Mathematics》2009,309(6):1603-1610
For a connected graph G containing no bridges, let D(G) be the family of strong orientations of G; and for any DD(G), we denote by d(D) the diameter of D. The orientation number of G is defined by . Let G(p,q;m) denote the family of simple graphs obtained from the disjoint union of two complete graphs Kp and Kq by adding m edges linking them in an arbitrary manner. The study of the orientation numbers of graphs in G(p,q;m) was introduced by Koh and Ng [K.M. Koh, K.L. Ng, The orientation number of two complete graphs with linkages, Discrete Math. 295 (2005) 91-106]. Define and . In this paper we prove a conjecture on α proposed by K.M. Koh and K.L. Ng in the above mentioned paper, for qp+4.  相似文献   

14.
The energy of a graph G, denoted by E(G), is defined as the sum of the absolute values of all eigenvalues of G. Let G be a graph of order n and be the rank of the adjacency matrix of G. In this paper we characterize all graphs with . Among other results we show that apart from a few families of graphs, , where n is the number of vertices of G, and χ(G) are the complement and the chromatic number of G, respectively. Moreover some new lower bounds for E(G) in terms of are given.  相似文献   

15.
The boxicity of a graph H, denoted by , is the minimum integer k such that H is an intersection graph of axis-parallel k-dimensional boxes in Rk. In this paper we show that for a line graph G of a multigraph, , where Δ(G) denotes the maximum degree of G. Since G is a line graph, Δ(G)≤2(χ(G)−1), where χ(G) denotes the chromatic number of G, and therefore, . For the d-dimensional hypercube Qd, we prove that . The question of finding a nontrivial lower bound for was left open by Chandran and Sivadasan in [L. Sunil Chandran, Naveen Sivadasan, The cubicity of Hypercube Graphs. Discrete Mathematics 308 (23) (2008) 5795–5800].The above results are consequences of bounds that we obtain for the boxicity of a fully subdivided graph (a graph that can be obtained by subdividing every edge of a graph exactly once).  相似文献   

16.
For a graph G, its cubicity is the minimum dimension k such that G is representable as the intersection graph of (axis-parallel) cubes in k-dimensional space. (A k-dimensional cube is a Cartesian product R1×R2×?×Rk, where Ri is a closed interval of the form [ai,ai+1] on the real line.) Chandran et al. [L.S. Chandran, C. Mannino, G. Oriolo, On the cubicity of certain graphs, Information Processing Letters 94 (2005) 113-118] showed that for a d-dimensional hypercube Hd, . In this paper, we use the probabilistic method to show that . The parameter boxicity generalizes cubicity: the boxicity of a graph G is defined as the minimum dimension k such that G is representable as the intersection graph of axis-parallel boxes in k-dimensional space. Since for any graph G, our result implies that . The problem of determining a non-trivial lower bound for is left open.  相似文献   

17.
The pebbling number of a graph G, f(G), is the least n such that, no matter how n pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of pebbling moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. Let p1,p2,…,pn be positive integers and G be such a graph, V(G)=n. The thorn graph of the graph G, with parameters p1,p2,…,pn, is obtained by attaching pi new vertices of degree 1 to the vertex ui of the graph G, i=1,2,…,n. Graham conjectured that for any connected graphs G and H, f(G×H)≤f(G)f(H). We show that Graham’s conjecture holds true for a thorn graph of the complete graph with every by a graph with the two-pebbling property. As a corollary, Graham’s conjecture holds when G and H are the thorn graphs of the complete graphs with every .  相似文献   

18.
In 1954, Tutte conjectured that every bridgeless graph has a nowhere-zero 5-flow. Let ω(G) be the minimum number of odd cycles in a 2-factor of a bridgeless cubic graph G. Tutte’s conjecture is equivalent to its restriction to cubic graphs with ω≥2. We show that if a cubic graph G has no edge cut with fewer than edges that separates two odd cycles of a minimum 2-factor of G, then G has a nowhere-zero 5-flow. This implies that if a cubic graph G is cyclically n-edge connected and , then G has a nowhere-zero 5-flow.  相似文献   

19.
Let T(G) be the number of spanning trees in graph G. In this note, we explore the asymptotics of T(G) when G is a circulant graph with given jumps.The circulant graph is the 2k-regular graph with n vertices labeled 0,1,2,…,n−1, where node i has the 2k neighbors i±s1,i±s2,…,i±sk where all the operations are . We give a closed formula for the asymptotic limit as a function of s1,s2,…,sk. We then extend this by permitting some of the jumps to be linear functions of n, i.e., letting si, di and ei be arbitrary integers, and examining
  相似文献   

20.
Let G be a simple graph of order n. Let and , where a and b are two nonzero integers and m is a positive integer such that m is not a perfect square. We say that Ac=[cij] is the conjugate adjacency matrix of the graph G if cij=c for any two adjacent vertices i and j, for any two nonadjacent vertices i and j, and cij=0 if i=j. Let PG(λ)=|λI-A| and denote the characteristic polynomial and the conjugate characteristic polynomial of G, respectively. In this work we show that if then , where denotes the complement of G. In particular, we prove that if and only if PG(λ)=PH(λ) and . Further, let Pc(G) be the collection of conjugate characteristic polynomials of vertex-deleted subgraphs Gi=G?i(i=1,2,…,n). If Pc(G)=Pc(H) we prove that , provided that the order of G is greater than 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号