首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scanning tunneling microscopy (STM) has been used to investigate monolayers of the ferroelectric copolymer polyvinylidenefluoride/trifluoroethylene P(VDF/TrFE) showing images of ordered polymer monolayers. By scanning with video frame rate, direct observation of the motion of onedimensional domain walls was also possible for the first time. The images clearly show domain walls normal to the polymer chains. From measurements of the temperature dependence of the domain wall velocities the activation energy for the thermally generated kink motion was estimated. These results are compared with theoretical models describing domain wall motion in ferroelectric PVDF.  相似文献   

2.
A density functional theory is proposed for nonuniform freely jointed tangential hard sphere polymer melts in which the bonding interaction is treated on the basis of the properties of the Dirac δ-function, thus avoiding the use of the single chain simulation in the theory. The excess free energy is treated by making use of the universality of the free energy density functional and the Verlet-modified (VM) bridge function. To proceed numerically, one of the input parameters, the second-order direct correlation function of a uniform polymer melt is obtained by solving numerically the Polymer-RISM integral equation with the Percus-Yevick (PY) closure. The predictions of the present theory for the site density distribution, the partition coefficient and the adsorption isotherm, near a hard wall or between two hard walls are compared with computer simulation results and with those of previous theories. Comparison indicates that the present approach is more accurate than the previous integral equation theory and the most accurate Monte Carlo density functional theories. The predicted oscillations of the medium-induced force between two hard walls immersed in polymer melts are consistent with the experimental results available in the literature. Received 18 April 2000  相似文献   

3.
Stretched polymers will lose their possible configurations if they are mixed with nanoparticles or touch a hard wall,which leads to a strong depletion attraction responsible for the enrichment of nanoparticles near substrates.Moreover,it is found that there exists a sacrifice mechanism in confined pure polymer samples or polymer-nanoparticle mixtures,that part of the polymers,in order to reach a minimum free energy for the total system,are adsorbed on hard walls even though they lose their conformation.The current study provides a simple yet effective approach for the design of thin polymer composites.  相似文献   

4.
A technique of controlling the pitch and radius of curvature of a cylindrical lens array is presented. The lens pitch is controlled by producing the linear partition walls that sandwich a UV-curable polymer. The partition walls are created by scratching a polymeric substrate with a sharp edge. The radius of curvature can be controlled by designating the volume of the UV-curable polymer dispensed between the partition walls that prevent the spreading of the polymer due to the pinning effect. This technique can contribute to realizing a practical fabrication method for cylindrical lens arrays owing to its simplicity and flexibility.  相似文献   

5.
The possibility of attaining the calculated probabilities of the losses of ultracold neutrons (UCN) stored in vessels whose walls are made from graphite, fluorine polymer oil, or heavy-water ice is tested experimentally. It is found that UCN hitting the walls of a graphite vessel undergo additional inelastic scattering not predicted by the theory. It is shown that this scattering may be due to the presence of surface hydrogen that provides a channel of UCN leakage slightly varying with temperature. For vessels whose walls are coated with fluorine polymer oil, additional inelastic UCN scattering is also observed and is found to be efficiently suppressed with decreasing temperature. The experimentally observed and calculated values of the probabilities of UCN losses are shown to be in good agreement for vessels whose walls are made from heavy-water ice.  相似文献   

6.
Molecular-dynamics simulations of thin polymer films are performed with a recently introduced coarse-grained model. This model reproduces many features of polymer crystallization from the melt. In this work, we show how confining walls influence the structure formation depending on the degree of supercooling. Already in the melt at high temperature a preorder is induced near the walls. On lowering the temperature, crystalline order nucleates at the walls, from which it propagates into the film. We show how this growth can be influenced by prestructuring the wall.Received: 1 January 2003, Published online: 21 October 2003PACS: 61.20.Ja Computer simulation of liquid structure - 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling - 68.55.-a Thin film structure and morphology  相似文献   

7.
A model of sputtering (ablation) of polymer walls caused by the thermal effect of an arc in low-voltage circuit breaker is suggested. The model takes into account heating, volume thermal decomposition, and fusion of the polymer, as well as the screening action of the vapor from the surface. The ablation of the walls is due to the UV component of the arc radiation, most of which is absorbed in the vapor. It is shown that the ablation conditions change drastically with distance to the center of the arc. The parameters of the reaction zone and of the area occupied by the melted polymer are estimated.  相似文献   

8.
We present a Brownian dynamics theory with full hydrodynamics (Stokesian dynamics) for a Gaussian polymer chain embedded in a liquid membrane which is surrounded by bulk solvent and walls. The mobility tensors are derived in Fourier space for the two geometries, namely, a free membrane embedded in a bulk fluid, and a membrane sandwiched by the two walls. Within the preaveraging approximation, a new expression for the diffusion coefficient of the polymer is obtained for the free-membrane geometry. We also carry out a Rouse normal mode analysis to obtain the relaxation time and the dynamical structure factor. For large polymer size, both quantities show Zimm-like behavior in the free-membrane case, whereas they are Rouse-like for the sandwiched membrane geometry. We use the scaling argument to discuss the effect of excluded-volume interactions on the polymer relaxation time.  相似文献   

9.
We demonstrate that a polymer confined to a narrow channel migrates towards the center when driven by an external force parallel to the channel walls. This migration results from asymmetric hydrodynamic interactions between polymer segments and the confining walls. A weak pressure-driven flow, applied in the same direction as the external force, enhances the migration. However, when the pressure gradient and the external force act in opposite directions the polymer can migrate towards the boundaries. Nevertheless, for sufficiently strong forces the polymer always migrates towards the center. A dumbbell kinetic theory explains these results qualitatively. A comparison of our results with experimental measurements on DNA suggests that hydrodynamic interactions in polyelectrolytes are only partially screened. We propose new experiments and analysis to investigate the extent of the screening in polyelectrolyte solutions.  相似文献   

10.
The matrix polymer morphology of a collection of low-density polyethylene (LDPE) foams manufactured from a high-pressure nitrogen solution process is analyzed at different length scales. This morphology is compared with that of the extruded LDPE, which was used to produce the foams. The main sources for the differences between the morphologies of both kinds of material seem to be related to the geometrical arrangement of the polymer in thin cell walls and to the complicated mechanical and thermal history of the polymer that comprises the cell walls of the foams.  相似文献   

11.
Formation of thin layers of photocatalyst in photo-microreactor is a challenging work considering the properties of both catalyst and the microchannel material. The deposition of semiconductor materials on fluoropolymer based microcapillary requires the use of economical methods which are also less energy dependent. The current work introduces a new method for depositing nanoparticles of TiO2 on the inner walls of a hexafluoropropylene tetrafluoroethylene microtube under mild conditions using ultrasound technique. During the ultrasonication process, changes in the polymer surface were observed and characterized using Attenuated Total Reflectance spectroscopy, Scanning Electron Microscopy and Confocal Microscopy. The rough patches form sites for catalyst deposition resulting in the formation of thin layer of TiO2 nanoparticles in the inner walls of the microtube. The photocatalytic activity of the TiO2 coated fluoropolymer based microcapillary was evaluated for removal of phenol present in water.  相似文献   

12.
13.
Using numerical calculations, we undertake the first morphological studies of mixtures of AB diblocks and nanoparticles that are confined between two hard walls. A complex interplay of entropic and enthalpic interactions drives the nonselective particles to localize at the hard walls and A/B interfaces, causing the mixture to spontaneously self-assemble into particle-decorated lamellae that are oriented perpendicular to the surfaces. The film reveals a periodic array of particle "nanowires" that are separated by the nanoscale polymer domains, yielding a vital material for nanodevice fabrication.  相似文献   

14.
We map dilute or semidilute solutions of nonintersecting polymer chains onto a fluid of "soft" particles interacting via a concentration dependent effective pair potential, by inverting the pair distribution function of the centers of mass of the initial polymer chains. A similar inversion is used to derive an effective wall-polymer potential; these potentials are combined to successfully reproduce the calculated exact depletion interaction induced by nonintersecting polymers between two walls. The mapping opens up the possibility of large-scale simulations of polymer solutions in complex geometries.  相似文献   

15.
In this work realistic biosensing structures based on the integration of porous silicon photonic crystals with polymer coating technology are presented. Microcavities and rugate filters are chosen as the photonic crystal configuration. The deposition of a polymer layer on the pore walls of these structures is proposed to improve the selectivity and sensitivity of the sensing function. A complete effective refractive index model including the polymer layer, the target and external effects like silicon oxidation has been developed in order to accurately simulate the structures. It is expected that the proposed structures could be used as low cost, highly integrated and highly sensitive biological sensors.  相似文献   

16.
Experiments have been conducted using laser-driven cylindrical hohlraums whose walls are machined from Ta2O5 foams of 100 mg/cc and 4 g/cc densities. Measurements of the radiation temperature demonstrate that the lower density walls produce higher radiation temperatures than the high density walls. This is the first experimental demonstration of the prediction that this would occur [M. D. Rosen and J. H. Hammer, Phys. Rev. E 72, 056403 (2005)10.1103/PhysRevE.72.056403]. For high density walls, the radiation front propagates subsonically, and part of the absorbed energy is wasted by the flow kinetic energy. For the lower wall density, the front velocity is supersonic and can devote almost all of the absorbed energy to heating the wall.  相似文献   

17.
The structure and energy of asymmetric vortex-like Bloch and Néel walls in a magnetically uniaxial film with an easy magnetization axis lying in the film plane are investigated by numerically minimizing the total energy within the rigorous micromagnetic approach and the two-dimensional model of the magnetization distribution. The calculations are performed over wide ranges of film thicknesses b (up to b = 1 μm) and magnetic parameters of the films. It is established that the asymmetric vortex-like domain walls are the most universal wall structures in the films under consideration. In magnetically uniaxial films, unlike in magnetically multiaxial films, the asymmetric Bloch walls are always stable.  相似文献   

18.
Microphase and macrophase separation phenomena can simultaneously appear in ABA/C copolymer blend systems due to the immiscibility among monomers A, B, and C. In this work, the surface morphologies and compositions of ABA/C blend thin films confined between two walls, which were used to mimic SEBS/PMMA films, have been simulated by a lattice Monte Carlo (MC) method. The effect of the polymer-wall interaction on the surface morphologies and compositions of thin films was investigated as a function of blend composition and film thickness. It is shown that the simulated surface morphologies of thin films resulting from the macrophase separation between copolymer ABA and homopolymer C and the microphase separation between block A and block B in ABA copolymer are similar to the experimental surface morphology of SEBS/PMMA polymer blend films observed by atomic force microscope (AFM). The effect of substrate on the surface morphologies by MC simulation is qualitatively consistent with the experimental results. The composition profiles of thin films are given to characterize the micro- and macrophase separation in thin films. It is indicated that the surface energy of the substrate (substrate/air) plays a crucial role on the surface composition. For a fixed surface, the adsorptions of polymer on the substrate and film thickness are also important.  相似文献   

19.
We developed a new ultra-fine pitch chip-on-glass (COG) bonding technique using insulated metal bumps and anisotropic conductive film (ACF). An insulating layer was formed by spin coating a photosensitive insulating polymer and subsequently exposing it without any mask. The shape of the insulating layer coverage on the side walls of the metal bumps can be controlled by changing the exposure time and the viscosity of the photosensitive insulating polymer. In our experiment, we successfully fabricated COG joints with a 25 μm pitch using Au bumps with an insulating layer on their side walls and a conventional single-layer ACF. When the bumps were covered with the photosensitive insulating polymer, a few conductive particles were trapped between neighboring bumps and many conductive particles were embedded between bumps and pads. The electrical resistance between neighboring bumps was measured by the two-point probe method. The resistances were measured only in uncoated specimens. The measured resistance indicates that electrical shorting between neighboring bumps occurred in uncoated specimens. Therefore, electrical shorting was successfully prevented by the insulating layer on the side walls of the bumps.  相似文献   

20.
With the use of a theory developed earlier, bulk effects in ultracold neutron coherent inelastic scattering are considered both for solid and liquid target samples related to energy and momentum exchange with phonon and diffusion-like modes. For the neutron in a material trap, differential and integral probabilities for the energy transfer per bounce are presented in a simple analytic form which exhibits parameter dependence. As an example, the theoretical values for the ultracold-neutron loss rate from a storage bottle with Fomblin-coated walls and stainless-steel walls are evaluated. A possible contribution from incoherent inelastic scattering is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号