首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用NND方法计算三维喷管气流场   总被引:1,自引:0,他引:1  
本文运用NND显式差分格式,计算了三维喷管气流场。气流场计算的基本方程为一般贴体坐标系下三维守恒型的欧拉方程。采用了时间分裂法和Steger-Warming矢通量分裂技术。在喷管内沿周向的每个由轴线和壁面构成的子午面上根据泊松方程生成贴体网格。本文运用三维程序计算了轴对称JPL喷管,同时与实验结果和前人采用轴对称二维程序所计算的结果做了对比。最后,本文还计算了三维矢量喷管,计算结果与现有的实验结果一致。通过轴对称JPL喷管和三维矢量喷管的计算考核,表明建立的算法和编写的计算程序是正确的。文中提出了采用子午面形式的贴体网格时奇性轴的处理方法。计算结果表明在喷管壁面处,马赫数与压强的计算结果与实验值吻合较好,而在喷管轴线处,只有当网格较密时,才能得出与实验结果接近的计算结果。  相似文献   

2.
The production of monodisperse tracer particles with suitable properties for optical flow investigations, such as small size, spherical shape, smooth surface, appropriate density and diffraction index, non-evaporating and agglomerating, electrically neutral, non-toxic and easily removable, is a challenging task due to the sensitivity of the particle size distribution to the boundary conditions. In order to obtain general design and operating rules for atomizers which are mostly applied for air flows, this dependence is investigated here. It is shown that high concentrations of narrow band particle size distributions, with a mean diameter below 1 µm, can easily be generated by means of multi-hole nozzles under over-critical pressure conditions, when the kinetic energy, transferred into the seeding liquid through the nozzle exits, is well balanced with the liquid volume inside the atomizer. In addition, flow visualization pictures are presented which permit a useful assessment of the functioning of the nozzles and reveal operating features of the atomizers which were not previously known. In particular, it is shown that existing explanations of the importance of certain design features of the Laskin nozzle are of minor importance for the generation of appropriate tracer particles.  相似文献   

3.
Airblast atomizers are especially useful and commonplace in liquid fuel combustion applications. However, the spray formation processes, the droplet dynamics and the final drop size distributions are still not sufficiently understood due to the coupled gas-liquid interactions and turbulence generation. Therefore, empirical and semi-empirical approaches are typically used to estimate the global spray parameters. To develop a physical understanding of the spray evolution, a plain-jet airblast atomizer was investigated in an atmospheric spray rig using the phase-Doppler technique. The simultaneous drop size and axial and radial velocity components were measured on radial traverses across the spray at various axial distances from the nozzle for a range of atomizing pressures. The droplet turbulent and mean kinetic energies were found to be proportional to the atomizing pressure. Hence, the scatter of the radial motion of the droplets increased with the atomizing pressure. A droplet stability analysis was performed to locate the regions characterized by ongoing secondary atomization. The volume-to-surface diameter, D32, of the fully developed spray was compared with estimates provided by five published formulae. The role of liquid viscosity, hence the Ohnesorge number, was found to be negligible in the investigated regime. Three commonly used size distribution functions were fitted to the measured data to analyze their dependence on the atomizing pressure. The Gamma distribution function was found to give the best approximation to the atomization process.  相似文献   

4.
针对具有不同类型喷管的爆轰管在水下爆轰中形成的燃气射流问题,搭建了爆轰实验平台,研究了单次爆轰过程中尾部喷管对水下气泡形态与压力特征的影响。采用数字粒子图像测速技术对高速摄影机拍摄得到的气泡脉动图片进行流场可视化分析,得到各喷管工况下的气泡速度场。为了确认爆轰管内是否形成稳定爆轰波,并观察爆轰波在气液两相界面上的透反射特性,爆轰管尾部安装有2个动态压力传感器,同时在距离喷管一定距离处设置一个水下爆炸传感器,以监测水中传播的压力波。结果表明:扩张喷管工况下的气泡脉动过程与直喷管工况基本一致,但扩张喷管提高了燃气射流速度,气泡膨胀体积更大;因为燃气射流的持续性,收敛喷管工况下的气泡脉动过程具有明显差异,气泡膨胀体积较小,但气泡二次脉动时长相较于一次脉动时长衰减更小;扩张喷管提高了气泡脉动强度,扩张喷管工况下的气泡脉动压力与透射冲击波压力远大于直喷管工况下的气泡脉动压力与透射冲击波压力;收敛喷管工况下的气泡脉动压力与透射冲击波压力都较小,但收敛喷管燃气射流的持续性减缓了气泡脉动压力的衰减速度。相比于直喷管,扩张喷管工况下的气泡脉动时间、气泡脉动压力与透射冲击波压力都更大。收敛喷管工况下的气泡...  相似文献   

5.
Information of droplet size and size distribution lays the basis for investigations of atomization mechanisms and performance optimization. However, the laser diffraction and phase Doppler particle analyzers have difficulty in accurately characterizing sprays with a wide range of droplet sizes and very large droplets, especially if a large number of droplets are aspherical. A method to measure size in such large-droplet sprays based on digital imaging with backward illumination was developed, including an image acquisition system and image process programs. Calibration of the measurement system was performed using a dot calibration target with different dot sizes. An experimental setup was designed and established to characterize spray nozzles under different operation loads, as well as different nozzle arrangements. Results show that the droplet size of sprays ranges from dozens of microns to several millimeters. The superiority of wide load range for such nozzles was indicated by the size-measurement results under half-load to full-load operations. The present study revealed that the image processing technique can be effectively implemented for in-line size measurements of sprays with a wide distribution of droplet size and aspherical droplets, which would be difficult to characterize by other methods.  相似文献   

6.
Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzle until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. Liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.  相似文献   

7.
In this study, the generation of inkjet droplets of xanthan gum solutions in water–glycerin mixtures was investigated experimentally to understand the jetting and drop generation mechanisms of rheologically complex fluids using a drop-on-demand inkjet system based on a piezoelectric nozzle head. The ejected volume and velocity of droplet were measured while varying the wave form of bipolar shape to the piezoelectric inkjet head, and the effects of the rheological properties were examined. The shear properties of xanthan gum solutions were characterized for wide ranges of shear rate and frequency by using the diffusive wave spectroscopy microrheological method as well as the conventional rotational rheometry. The extensional properties were measured with the capillary breakup method. The result shows that drop generation process consists of two independent processes of ejection and detachment. The ejection process is found to be controlled primarily by high or infinite shear viscosity. Elasticity can affect the flow through the converging section of inkjet nozzle even though the effect may not be strong. The detachment process is controlled by extensional viscosity. Due to the strain hardening of polymers, the extensional viscosity becomes orders of magnitude larger than the Trouton viscosities based on the zero and infinite shear viscosities. The large extensional stress retards the extension of ligament, and hence the stress lowers the flight speed of the ligament head. The viscoelastic properties at the high-frequency regime do not appear to be directly related to the drop generation process even though it can affect the extensional properties.  相似文献   

8.
Micro-droplet formation from a passive vibrating micro-nozzle driven by a pulsed pressure wave is numerically simulated. The micro-nozzle is formed from an orifice in a thin walled plate that is allowed to freely vibrate due to the pressure loading on the plate. The analysis couples the fluid flow from the nozzle and the resultant droplet formation with the nozzle vibration calculated using large deflection theory. The problem is made nondimensional based on the capillary parameters of time, velocity and pressure. The applied pressure and nozzle material properties are varied to alter the vibration characteristics of the orifice plate used to form the nozzle. The initiation of drop formation is found to coincide with a threshold impulse input, defined as the product of the pressure magnitude and the pulse duration. Increasing the impulse can result in multiple satellite droplet formation, but the effect on the primary droplet size is minor. The vibration of the nozzle only weakly influences the droplet break-off time, but is shown to significantly affect the droplet volume, shape, and satellite droplet formation.  相似文献   

9.
Driven by high pressures, the submerged waterjet is featured by high velocity and cavitation, which arouse unsteady flow signals. To elucidate the temporal and spatial characteristics of the high-pressure submerged waterjet, an experimental work was carried out with the waterjet submerged in a square duct and jet pressures varied from 50 to 320 MPa. Three nozzles with different throat-segment diameters were considered. Under non-impingement condition, pressure fluctuations near the waterjet stream were acquired with miniature dynamic pressure transducers. For the jet impingement cases, microhardness, surface morphology and mass removal rate of the impinged specimens were measured. The results show that drastic change of pressure in ambient water is caused by the waterjet. As the jet pressure rises, high-frequency components are excited and the effect of cavitation is significant. In streamwise direction, the gap between the first, second and third highest frequencies is progressively narrowed. The maximum pressure amplitude increases as waterjet develops, irrespective of the jet pressure and the nozzle diameter. High jet pressures lead to high microhardness of the target surface. Surface morphology serves as an indicator of the synthetic effect of jet impingement and cavitation. Erosion patterns associated with the three nozzles are considerably different; cavitation erosion intensity declines with the increase in the nozzle diameter.  相似文献   

10.
An experimental and numerical study of underexpanded free sonic jet flows issuing from rectangular, elliptical and slot nozzles has been undertaken. Aspect ratios (AR) of 1, 2, and 4 are described at pressure ratios (exit plane pressure to ambient pressure), of 2 and 3. There is good qualitative agreement between the experimental observations and the numerical predictions. In the case of rectangular jets, a complex system of shock waves forming the incident shock system is identified. This shock wave system originates at the corners of the nozzle exits, and proceeds downstream. Mach reflections are found to occur on the incident shock wave surface as well as the presence of a Mach disk terminating the first jet cell. This Mach disk has the shape of a square, a hexagon, or an octagon depending on the nozzle shape. For slot and elliptical jets, the formation of the incident shock wave was not observed along the minor axis plane of the nozzle for AR > 2. The incident shock wave was observed to originate downstream of the nozzle exit in the major axis plane. This wave system undergoes a transition to Mach reflection as it propagates downstream of the nozzle exit. In all cases tested, the shape of the jet boundary is significantly distorted. In rectangular jets, the narrowing of the jet boundary along the diagonal axis of the nozzle exit is observed, and in the case of the elliptical and slot jets axis switching is noted.  相似文献   

11.
Information of droplet size and size distribution lays the basis for investigations of atomization mechanisms and performance optimization.However,the laser diffraction and phase Doppler particle analyzers have difficulty in accurately characterizing sprays with a wide range of droplet sizes and very large droplets,especially if a large number of droplets are aspherical.A method to measure size in such largedroplet sprays based on digital imaging with backward illumination was developed,including an image acquisition system and image process programs.Calibration of the measurement system was performed using a dot calibration target with different dot sizes.An experimental setup was designed and established to characterize spray nozzles under different operation loads,as well as different nozzle arrangements.Results show that the droplet size of sprays ranges from dozens of microns to several millimeters.The superiority of wide load range for such nozzles was indicated by the size-measurement results under half-load to full-load operations.The present study revealed that the image processing technique can be effectively implemented for in-line size measurements of sprays with a wide distribution of droplet size and aspherical droplets,which would be difficult to characterize by other methods.  相似文献   

12.
A twin-fluid nozzle was proposed for low-pressure atomization. The nozzle is featured by swirling air flows in the mixing chamber. Liquid medium is thereby inhaled due to the pressure difference. An experimental work was performed to investigate the atomization performance of the nozzle and the hydrogen peroxide solution served as the liquid medium. Droplet size and droplet velocity were measured. Effects of the diameter of the air-injection orifice and the air-injection pressure were investigated. The results show that small droplet size is achieved with the proposed nozzle. As the spray develops, Sauter mean diameter (SMD) of the droplets decreases first and then increases, irrespective of the variation of the air-injection orifice diameter and the air-injection pressure. Overall SMD varies inversely with the air-injection orifice diameter and air-injection pressure. Near the nozzle, cross-sectional velocity distribution exhibits a peak-valley pattern, which is replaced with uniformized velocity distributions away from the nozzle. Similarity of cross-sectional radial velocity distribution at different air pressures is evidenced. Furthermore, the correlation between droplet size and droplet velocity is established.  相似文献   

13.
不同当量比下喷管对旋转爆震特性的影响研究   总被引:1,自引:0,他引:1  
王顺利  吴云  金迪  郭善广  钟也磐  杨兴魁 《爆炸与冲击》2020,40(10):102102-1-102102-11

为研究不同当量比下喷管构型对旋转爆震特性的影响,以煤油预燃裂解气为燃料,氧气体积分数为30%的富氧空气为氧化剂,开展了无喷管、收敛喷管、扩张喷管和收敛扩张喷管等工况下旋转爆震特性实验研究。实验发现,当量比为0.73~1.30时旋转爆震可稳定工作。随着当量比和喷管构型的变化,爆震波出现了单波、不稳定的对撞双波和稳定的对撞双波等3种传播模态。喷管构型对模态转换和旋转爆震波速有重要影响,收敛和收敛扩张喷管会促使新波头的产生,导致爆震波主要以双波对撞模态传播;而扩张喷管工况下,爆震波主要以单波模态传播。收敛喷管和收敛扩张喷管会使得波速最大值偏离化学恰当比,收敛扩张喷管可以提升爆震波速。

  相似文献   

14.
Detailed numerical and experimental investigations of pseudo-shock systems in a Laval nozzle with parallel side walls are carried out. The location of the pseudo-shock system is defined in this system of two choked Laval nozzles by the ratio of the critical cross sections A2*/A1*{{A}_{2}^*/{A}_{1}^*} , the stagnation pressure loss across the shock system and viscous losses. The wall pressure distributions and high-speed schlieren videos recorded in the experiments are compared to the results of a steady and an unsteady numerical simulation. For the steady case, good agreement is found between the calculated and measured shock structure and pressure distribution along the primary nozzle wall, except for a remaining slight deviation in the shock position. For the unsteady case, in which asymmetric shock configurations are observed, deviations of the results with respect to the stochastic wall attachment of the shock system are given which indicate the necessity of further investigations on that topic.  相似文献   

15.
The class of nozzles with a central body, so-called spike nozzles, is considered for axisymmetric and plane central body geometries. A method of constructing the nozzle contour is outlined. The boundary layer is calculated using a three-parameter turbulence model and the loss of specific impulse due to friction in both spike nozzles and a Laval nozzle with the same expansion ratio are determined. A comparative analysis of the calculation results obtained, which makes it possible to determine the advantages and limitations of the nozzles considered, is carried out.  相似文献   

16.
The study of an under‐expanded supersonic jet impinging on a flat plate by using large‐eddy simulation is reported. A third‐order upwind compact difference and a fourth‐order symmetric compact scheme are employed to discretize the nondimensional axisymmetric compressible Favre‐filtered Navier–Stokes equations in space, whereas the third‐order Runge–Kutta method with the total variation diminishing property is adopted to deal with the temporal discretization. The numerical simulation successfully captures the shock wave and vortex structures with different scales in the flow field. Waves with high and low frequencies traveling forward and reflecting back, and sound sources in different locations can be observed. By comparison with the frequency of the impinging tone from the experiment, it can be deduced that the change of pressure and swirling strength in the shear layer, pressure change on the impinging plate, and vortex merging in the jet shear layer are interdependent with the impinging tone. The effects of nozzle lip thickness on the impinging jet flow field have been investigated. The results show that the values of pressure fluctuation and vortex swirling strength in the shear layer near the nozzle have an extremum with the variation of the nozzle lip thickness. The results provide a theoretical foundation for the design of supersonic nozzles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
自激振荡脉冲射流喷嘴装置系统频率特性理论研究   总被引:5,自引:1,他引:4  
根据相似系统原理和流体网络理论建立了自激振荡脉冲射流喷嘴装置的等效网络模型,利用系统传递函数推导了系统频率特性方程并进行了数值计算。结果表明:喷嘴装置的固有频率主要由喷嘴形状、结构参数、入口流速、射流中压力扰动波波速决定;自激振荡腔腔径、自激振荡腔腔长、上喷嘴直径、下喷嘴直径都对系统频率特性影响很大。提出了相应的自激振荡脉冲射流喷嘴设计准则,即喷嘴装置在最佳阻尼比下产生谐波共振。  相似文献   

18.
淡勇  孟德成  李娟  李小勇 《实验力学》2012,27(3):335-342
压力容器接管区域应力场的获得是压力容器强度分析和结构设计的基础。本文采用实验研究的方法,对压力容器斜接管区域的应力状态进行分析研究。根据实验研究的目的,按照工程设计标准设计、制造了一台大型带有两个斜接管压力容器的实验模型,进行了实验方案设计,采用电测法进行了容器斜接管区域的应力测试,在实验数据科学、合理处理的基础上,获得了容器斜接管区域的应力状态和分布规律。实验研究结果表明,容器斜接管锐角侧、钝角侧和相贯线最低点都存在着较大的局部应力,且锐角侧的局部应力数值最大,但是相贯线上的局部应力影响范围较小。  相似文献   

19.
In this study, theoretical analyses have been performed to investigate the effects of atomizer construction and controlled pressure difference of swirl atomizers. The analysis of fluid field in the swirl chamber is governed by mass/energy conservation rules; in the region outside the nozzle, the analysis of oscillation of liquid sheet is based on Squire’s expression for the amplitude growth rate. With some physical assumptions of control volume, initial values and model correlation, analytical results make it possible to predict film thickness, velocity distribution, spray cone angle and droplet size directly. The distribution of velocity profile and boundary layer thickness in the swirl chamber have been established with the aid of MATLAB. Based on the results we obtained, we here propose the change of individual design parameter and its corresponding flow number to optimize the performance of swirl atomizers.  相似文献   

20.
Numerical simulation is used to study the gasdynamics of annular cumulative nozzles. The class of nozzles considered includes those with a flat-ended plug and plugs of different length. The thrust performance of cumulative nozzles is determined over wide ranges of the nozzle pressure ratio and the specific heat ratio and the ranges on which the self-adjustment effect takes place are established. It is found that for low nozzle pressure ratios the cumulative nozzle with a flat-ended plug provides greater thrust than a finite-length plug nozzle optimal for operation in a vacuum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号