首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The choice of lateral and terminal substitution can have a major influence on the structure of a liquid crystalline supermolecule, which in turn can induce radically different phase behaviour. In this study we use molecular dynamics simulations to investigate the shape of a liquid crystal dendrimer within a liquid crystalline solvent. A coarse‐grained (CG) simulation model is employed to represent a third generation dendrimer in which 32 mesogenic groups are bonded to chains at the end of each branch of the dendrimer. In this CG‐model the liquid crystal groups can be appended either terminally or laterally. This bonding option is used to generate the structure of four separate systems: (a) a dendrimer with 32 terminal mesogens, (b) a dendrimer with 32 laterally appended mesogens, (c) and (d) dendrimers with 16 lateral and 16 terminal groups represented with laterally bonded sites on one side of the molecule, model (c) or next to terminally bonded sites, model (d). The simulations show that the dendrimer is able to change shape in response to molecular environment and that the molecular shape adopted depends critically on the nature of the lateral/terminal susbstitution.  相似文献   

2.
ABSTRACT

The synthesis and characterisation of several members of the 1,ω-bis(4-cyanobiphenyl-4′-yl) alkane (CBnCB) and the 1-(4-cyanobiphenyl-4′-yloxy)-ω-(4-cyanobiphenyl-4′-yl) alkane (CBnOCB) homologous series are reported. The new odd members described CB5CB, CB13CB, CB4OCB, CB8OCB and CB10OCB all exhibit twist-bend nematic and nematic phases. The members of these series already reported in literature, CB7CB, CB9CB, CB11CB and CB6OCB, were also prepared in order to allow for a direct comparison of their transitional properties. The properties of these dimers are also compared to those of the corresponding members of the 1,ω-bis(4-cyanobiphenyl-4,-yloxy) alkanes (CBOnOCB). For any given total spacer length, for odd members of these series, the nematic–isotropic transition temperatures and associated entropy changes are greatest for the CBOnOCB dimer and lowest for the CBnCB dimer. These trends are understood in terms of molecular shape. For short spacer lengths, the twist-bend nematic–nematic transition temperature (TNTBN) is higher for the CBnOCB series than for the CBnCB series but this is reversed as the spacer length increases. Of the CBOnOCB dimers, a virtual value of TNTBN was estimated for CBO3OCB and TNTBN was measured for CBO5OCB. These values are considerably lower than those observed for the corresponding members of the CBnCB or CBnOCB series. The dependence of TNTBN on molecular structure is discussed not only in terms of the molecular curvature but also in the ability of the molecules to pack efficiently. As the temperature range of the preceding nematic phase increases, so the twist-bend nematic–nematic transition entropy change decreases and the transition approaches second order for the longer spacers. For comparative purposes, the transitional behaviour of the even-membered dimers CB6CB, CB5OCB and CBO4OCB is reported and differences accounted for in terms of molecular shape.  相似文献   

3.
ABSTRACT

The synthesis and characterisation of two new sets of non-symmetric liquid crystal dimers is reported, the 1-(4-substitutedazobenzene-4′-yloxy)-6-(4-cyanobiphenyl-4′-yl)hexanes (CB6OABX) and 1-(4-substitutedazobenzene-4′-yloxy)-6-(4-cyanobiphenyl-4′-yloxy)pentanes (CBO5OABX). The terminal substituents are methyl, methoxy, butyl, butyloxy, nitrile and nitro. All the CB6OABX dimers exhibit twist-bend nematic (NTB) and nematic (N) phases. The CBO5OABX dimers also all show an N phase but only the butyl and butyloxy homologues exhibit the NTB phase. The transitional behaviour of the non-symmetric dimers is compared to that of the corresponding symmetric dimers, the 1,5-bis(4-substitutedazobenzene-4′-yloxy)pentanes (XABO5OABX) and either 1,7-bis(4-cyanobiphenyl-4′-yl)heptane or 1,5-bis(4-cyanobiphenyl-4′-yloxy)pentane. The XABO5OABX dimers all show a nematic phase and in addition, the butyl homologue exhibits a smectic A phase. The difference in transitional behaviour between the CB6OABX and CBO5OABX dimers is attributed to the difference in their molecular shapes arising from different bond angles between the para axis of the cyanobiphenyl unit and the first bond in the spacer. Specifically, the all-trans conformation of a CBO5OABX dimer is more linear than that of the corresponding CB6OABX dimer. Differences within each set of dimers are attributed to changes in the average molecular shape and the strength of the mixed mesogen interaction on varying the terminal group. Crystal structures are reported for CB6OABOMe, CBO5OABNO2 and MeOABO5OABOMe.  相似文献   

4.
Liquid crystalline properties of five series of biphenyl derivatives connected with p-nitrophenyl, phenyl, 2-naphthyl, 9-phenathryl and bromo as the terminal groups via flexible spacers were studied. All the compounds exhibited nematic phase. The nematic–isotropic or isotropic–nematic transition properties resulted in an odd–even effect as the length of the spacers was varied, in which the even members exhibited higher values, for the compounds with p-nitrophenyl, phenyl, 2-naphthyl and 9-phenanthryl groups, while the transitional properties of the compounds substituted with bromo atom as the terminal group instead of the aryl groups did not show such odd–even effect. These results suggest that the aryl rings, such as p-nitrophenyl, phenyl, 2-naphthyl and 9-phenanthryl groups, play a role of mesogen while the terminal bromo atom does not. The effect of the terminal aryl rings on the liquid crystalline properties will be reported.  相似文献   

5.
The orientation of different segments of 4'-cyanophenyl 4-heptylbenzoate (7CPB) has been investigated using 13C NMR. The method of proton-encoded local field (PELF) spectroscopy in combination with off-magic-angle spinning (OMAS) of the sample was used. High resolution 2D spectra were obtained, from which the order parameters were calculated. Linear relations between the obtained order parameters and anisotropic chemical shifts determined by 1D 13C NMR were established and semi-empirical parameters were achieved. A 1:2 mixture of 7CPB and its chain-perfluorinated analogue (7PFCPB) showed interesting phase behaviour with the change of temperature. It was studied by the use of 13C NMR and polarizing optical microscopy. The order parameters of 7CPB in the smectic A phase of the mixture were calculated using the semi-empirical parameters obtained from the 2D NMR method.  相似文献   

6.
Summary The conformation of the immunosuppressive drug cyclosporin A (CPA), both in apolar solution and in crystalline state, has been studied by computer simulation techniques. Three molecular dynamics (MD) simulations have been performed: one modelling the crystal structure and two modelling the structure in apolar solution, using a restrained MD approach in which data from nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy are taken into account. The simulation of the crystalline state (MDC) concerns a system of 4 unit cells containing 16 cyclosporin A molecules and 22 water molecules, which is simulated using crystalline periodic boundary conditions. The simulations modelling the apolar solvent conformation (MDS) concern one isolated cyclosporin A molecule. In these simulations an extra term in the interatomic potential function is used, which forces the molecule to satisfy a set of 57 atom-atom distance constraints originating from nuclear Overhauser effects (NOEs) obtained from NMR spectroscopy and one distance constraint deduced from IR spectroscopy.From a comparison of the results of the crystal simulation to those of the X-ray experiment in terms of structure, atomic fluctuations, hydrogen bond pattern, etc., it is concluded that the force field that is used yields an adequate representation of crystalline cyclosporin A. Secondly, it is shown that the dynamic modelling technique that is used to obtain a structure in a polar solution from NMR distance information works well. Starting from initial conformations which have a root mean square difference of 0.14 nm both distance restrained MD simulations converge to the same final solution structure. A comparison of the crystal structure of cyclosporin A and the one in apolar solution shows that there are significant differences. The overall difference in atomic positions is 0.09 nm for the Cx atoms and 0.17 nm for all atoms. In apolar solution, the molecule is slightly more bent and the side chains of 1 MeBmt and 10 MeLeu adopt a different conformation.Abbreviations MeBmt (4R)-4[(E)-2-butenyl]-4-methyl-l-Threonine - MD Molecular dynamics - EM Energy minimization - MDC Molecular dynamics simulation of the crystal - MDS1 Restrained molecular dynamics simulation to obtain the structure in solution starting from the crystal structure - MDS2 Like MDS1, but starting from the SMS structure - SMS Proposed structure in solution, obtained by model building - XRAY An X-ray structure - CPA Cyclosporin A - NMR Nuclear magnetic resonance spectroscopy - NOE Nuclear Overhauser enhancement - MDS1 Mean simulated structure obtained by averaging over the time period 20–40 ps of the MDS1 simulation - MDS2 Mean simulated structure obtained by averaging over the time period 10–30 ps of the MDS2 simulation - Mean simulated structure obtained by averaging over the time period 7–15 ps and over the 16 asymmetric units in the computational box of the MDC simulation.  相似文献   

7.
We present a simple molecular level model based on Gay-Berne monomers linked by finitely extendable nonlinear elastic potential bonds for describing main chain polymerization in liquid crystals. We apply the model to study the influence that the order of the medium has on the characteristics of the chains obtained. We find that the chains prepared from the nematic are actually straighter than those obtained from a polymerization in the isotropic phase and that they are characterized by a small number of hairpins as experimentally observed.  相似文献   

8.
This study explores the calorimetric analysis of an aligned nano-colloidal aerosil dispersed octyl-cyanobiphenyl gel. This system was prepared by solvent dispersion method (SDM). Heating scans were performed at different heating rates from 20 to 1 K min−1 using DSC. Aligned samples follow Arrhenius behavior and showed a temperature shift in SmA-N and N-I transitions towards lower temperature. These samples show a decreased activated kinetics and an interesting relationship with their enthalpy. This behavior can be explained in terms of surface and molecular interaction between aerosil nano-particles and 8CB molecules and produced strain in the system.  相似文献   

9.
The assembly of colloidal particles in a nematic liquid crystal has been investigated using small-angle X-ray scattering. The structure and orientation of nanoparticle assemblies in bulk samples of aligned nematic liquid crystal have been determined. The method offers some advantages over optical microscopy, which is usually restricted to investigations of thin cells and micron-sized particles. The scattering from chains of particles has been calculated, and comparison with experimental results has shown that suspensions of 48 and 105 nm diameter silica nanoparticles formed highly ordered structures perpendicular to the liquid crystal director, consistent with quadrupolar defect-induced assembly.  相似文献   

10.
The twist and bend viscosities of dilute solutions of cyclic and hyperbranched liquid crystal polymers (LCP) dissolved in low molar mass nematic solvents were determined via dynamic light scattering analysis. These results were compared to those of linear chains with similar chemical repeat structures. The nematic solvent used was 4′-pentyloxy-4-cyanobiphenyl (50CB). The cyclic LCP oligomers, Cy TPB10, have a mesogenic group, 1-(4-hydroxy-4′-biphenyl)-2-(4-hydroxyphenyl) butane, separated by flexible decamethylene spacers. The twist viscosity of the cyclic Cy-TPB10 oligomers increases with molecular weight more strongly than the linear, TPB-10, suggesting that the hydrodynamic behavior of Cy-TPB10 is closer to that of a rigid rod than TPB10. Surprisingly, the intrinsic bend viscosity [ηbend] of Cy-TPB10 decreases with molecular weight, in contrast to the positive dependence for linear TPB10. This may reflect the higher strain energy in the smaller ring sizes. The hyperbranched LCP, TPD-b-8, is also based on the mesogen 10-bromo-1-(4-hydroxy-4′-biphenyl)-2(4-hydroxyphenyl) decane but with octyl groups at the chain ends. We compare the viscoelastic behavior of dilute nematic solutions of TPD-b-8 in 50CB against that of a linear main-chain LCP, TPB7, with the same mesogenic group but with heptamethylene spacers. The viscometric properties of TPD-b-8/50CB and TPB7/50CB are quite different. The results suggest that each chain is prolate (i. e., R > R) but that TPD-b-8 has a smaller chain anisotropy than that of TPB7. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
We demonstrate a simple method for measuring the twist elastic constant (K22) of a nematic liquid crystal (LC). By adding some chiral dopant to an LC host, the LC directors rotate 180° in a homogeneous cell, which is known as 180° super-twisted nematic (STN) cell. By preparing two such STN cells with different chiral concentrations and measuring their Fréedericksz threshold voltages, we can obtain the K22 and helical twisting power simultaneously. In the whole process, there is no need to measure the pitch length. Our obtained K22 values agree well with those reported by using other methods.  相似文献   

12.
The aggregation of liquid crystal nanodroplets from a homogeneous solution is an important but not well understood step in the preparation of various advanced photonic materials. Here, the authors performed molecular dynamics computer simulations of the formation of liquid crystalline nanodroplets, starting from an isotropic and uniform binary solution of spherical Lennard-Jones (solvent) and elongated ellipsoidal Gay-Berne (solute) rigid particles in low (<10%) concentration. They studied the dynamics of demixing and the mesogen ordering process and characterized the resulting nanodroplets assessing the effect of temperature, composition, and specific solute-solvent interaction on the morphology, structure, and anisotropy. They find that the specific solute-solvent interaction, composition, and temperature can be adjusted to tune the nanodroplet growth and size.  相似文献   

13.
The absorption properties of a dye molecule depend on its orientation relative to the light source. Thus the ability to predict how well a particular dye aligns with a liquid crystal host will improve the design of smart materials. One measurement of this alignment is the order parameter, which can be calculated from molecular dynamics simulations. The results for three dyes are presented here. The orientation of the long molecular axis of the dye relative to the liquid crystal director can range from perpendicular to parallel, with the dyes studied having an average order parameter of the dye similar to the average order parameter of the host.  相似文献   

14.
A photoresponsive azobenzene molecule DCAZO2 with two cholesteryl groups linked to both sides of the azobenzene group is doped in a mixture of nematic liquid crystal E7 and chiral dopant S811 (61.9 wt% E7, 36.1 wt% S811 and 2.0 wt% DCAZO2). Cooled from isotropic phase to 33.0°C, chiral nematic liquid crystal (N*LC) was formed in the sample and then the temperature was kept unchanged at 33.0°C. UV light irradiation induces the transcis photoisomerisation and thus an obvious phase transition. When the azobenzene groups isomerise to a cis-saturated state, the UV light was turned off and the white light was turned on at the same time. The bent-shaped cis isomer then turns back to the planar trans isomer gradually. A blue–green platelet texture representing cubic blue phase (BP) was observed and the size of the platelets was increased along with the cistrans isomerisation. UV–vis absorption spectra indicate that the photoinduced BP exists when the isomerisation degree is between 79% and 18%, and further cistrans isomerisation change BP back into N*LC. The large geometric structure of the cholesteryl groups and the large bent angle θ of the cis isomer are supposed to be responsible for the interesting result.  相似文献   

15.
By using electro-optical and dielectric absorption [1–4] measurements, we report our investigations of ionic effects on electro-optics and residual direct current voltages (VrDCs) of two polyimide (PI)-aligned twisted nematic (TN) cells with same liquid crystal mixture but different PI-alignment materials. We have also carried out new experimental methods to find out that the observed VrDCs were caused by LC-PI-interfacial trapped ions generated and transported from the LC medium for one TN cell, and from the PI layers for the other TN cell. Our measured VrDCs indicated that the former had two different exponential-decay rates similar to the published results by M. Mizusaki et al. [2] but the latter had only a single exponential-decay rate.  相似文献   

16.
Fukuda et al. reexamined the Berreman's model which attributes the surface anchoring to the elastic distortion of the uniaxial nematic liquid crystal induced by the grooves of a surface. They showed that at the variance with the assumption made in the original approach of Berreman, the azimuthal distortion of the director cannot be considered as negligibly small. Now this method is generalized to the biaxial nematic liquid crystals, with some approximations for the elastic constants. We obtain an additional term in the elastic distortion energy per unit area which depends on the second power of the cosine of the angle made between the main director n at infinity and the direction of the surface grooves. This additional term describes the distortion energy of the minor director m induced by the surface grooves when the n director is anchored exactly along the grooves. We have studied the stability of the n director around the grooves, and in one-constant model for each director the stability condition is that the elastic constant of the n director is the maximum.  相似文献   

17.
Molecular dynamics simulations have been carried out for liquid water at 7 different temperatures to understand the nature of hydrogen bonding at molecular level through the investigation of the effects of temperature on the geometry of water molecules. The changes in bond length and bond angle of water molecules from gaseous state to liquid state have been observed, and the change in the bond angle of water molecules in liquid against temperature has been revealed, which has not been seen in literature so far. The analysis of the radial distribution functions and the coordinate numbers shows that, on an average, each water molecule in liquid acts as both receptor and donor, and forms at least two hydrogen bonds with its neigbors. The analysis of the results also indicates that the water molecules form clusters in liquid.  相似文献   

18.
A periodic reaction field (PRF) method is a technique to estimate long‐range interactions. The method has the potential to effectively reduce the computational cost while maintaining adequate accuracy. We performed molecular dynamics (MD) simulations of a model liquid‐crystal system to assess the accuracy of some variations of the PRF method in low‐charge‐density systems. All the methods had adequate accuracy compared with the results of the particle mesh Ewald (PME) method, except for a few simulation conditions. Furthermore, in all of the simulation conditions, one of the PRF methods had the same accuracy as the PME method. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
Changes in the conformational equilibrium in thin layers of the nematic liquid crystal 5CB between fluorite plates were studied by IR spectroscopy. A decrease in the thickness of the liquid crystalline layer symmetrically confined by poorly wettable fluorite surfaces is accompanied by the shift of conformational equilibrium toward rotamers characterized by a higher energy and the spatial structure preventing dense packing of molecules in the interlayer.  相似文献   

20.
Highly mono-sized poly(methyl methacrylate) (PMMA)/liquid crystal (LC) microcapsules having a mono-sized single LC domain were prepared by the solute codiffusion method and solvent evaporation. The size of the LC domain in the microcapsules could be controlled by the amount of LC introduced during the swelling stage. The electro-optical properties of the polymer dispersed liquid crystal (PDLC) prepared by using the microcapsules was highly improved. In particular, the threshold voltage was lowered and the switching behaviour with an applied electric field was sharpened drastically compared with PDLC prepared simply by solvent evaporation-induced phase separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号