首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The chemorheology of blends of diallyl ortho-phthalate (DAOP) as reactive plasticizer of polyphenylene oxide (PPO) were monitored during their cure with either dicumyl peroxide (DCP) or tert-butyl hydroperoxide (TBHP), and their mechanical properties and morphology were studied. The steady shear and dynamic rheology behaviour was consistent with chemical gelation of DAOP in blends with low concentrations of PPO but the gelation behaviour at higher PPO concentrations was more complex. Dynamic mechanical thermal analysis of the blends of PPO:DAOP cured with either DCP or TBHP indicated a two phase structure. For PPO:DAOP/DCP, the lowest transition (between 150 °C and 200 °C) was attributed to a DAOP-rich phase and its Tg was higher than that for pure DAOP/DCP due to the presence of PPO in the DAOP-rich phase. The smaller damping shoulder near 250 °C was caused by a PPO-rich phase with a Tg that was lower than pristine PPO due to the presence of unpolymerized or polymerized DAOP. In contrast, the glass transition region of the PPO:DAOP/TBHP system was very broad due to an overlap of the transitions for DAOP-rich and PPO-rich phases caused by higher levels of unpolymerized DAOP. SEM observations of the blends revealed a two phase morphology with PPO-rich particles in a poly-DAOP matrix for blends with ?30 wt% PPO, a co-continuous morphology for blends with 40 wt% PPO, and a phase inverted morphology with more than 50 wt% PPO. These SEM observations agree with studies of the swelling, disintegration or dissolution of matrix of the blends in solvent.  相似文献   

2.
Poly(2,6‐dimethyl‐1,4‐phenylene oxide)/polyamide 6 (PPO/PA6) blends were reactively compatibilized by maleic anhydride (MA) grafted PPO (PPO‐g‐MA) and reinforced by short glass fibers (SGF) via melt extrusion. An observation of the SGF‐polymer interface by scanning electronic microscope (SEM) together with etching techniques indicated that the PPO‐g‐MA played a decisive role in the adhesion of polymers to SGF. The rheological behavior was investigated by capillary rheometer, and the addition of PPO‐g‐MA, and SGF could increase the viscosity of the PPO/PA6 blends. The analysis of fiber orientation and distribution in the PPO/PA6/SGF composites showed PPO‐g‐MA favored to the random dispersion of SGF. The statistic analysis of SGF length showed that PPO‐g‐MA was helpful to maintain the fiber length during melt‐processing. For the composites at a given SGF content of 30 wt %, the addition of PPO‐g‐MA increased the tensile strength from 59.4 MPa to 97.1 MPa and increased SGF efficiency factor from 0.028 to 0.132. The experimental data were consistent with the theoretical predictions of the extension of Kelly‐Tyson model for tensile strength. The fracture toughness of the composites was investigated by single edge notch three‐point bending test. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2188–2197, 2009  相似文献   

3.
This paper reports on the interfacial behaviour of block and graft copolymers used as compatibilizers in immiscible polymer blends. A limited residence time of the copolymer at the interface has been shown in both reactive blending and blend compatibilization by preformed copolymers. Polystyrene (PS)/polyamide6 (PA6), polyphenylene oxide (PPO)/PA6 and polymethylmethacrylate (PMMA)/PA6 blends have been reactively compatibilized by a styrene-maleic anhydride copolymer SMA. The extent of miscibility of SMA with PS, PPO and PMMA is a key criterion for the stability of the graft copolymer at the interface. For the first 10 to 15 minutes of mixing, the in situ formed copolymer is able to decrease the particle size of the dispersed phase and to prevent it from coalescencing. However, upon increasing mixing time, the copolymer leaves the interface which results in phase coalescence. In PS/LDPE blends compatibilized by preformed PS/hydrogenated polybutadiene (hPB) block copolymers, a tapered diblock stabilizes efficiently a co-continuous two-phase morphology, in contrast to a triblock copolymer that was unable to prevent phase coarsening during annealing at 180°C for 150 minutes.  相似文献   

4.
Blends of nylon 6 (PA6) and a semirigid thermotropic liquid crystalline polyarylester (THH) were prepared by coprecipitation. The changing of the morphology of the blends with their compositions was observed by means of a polarizing microscope and scanning electron microscope. The THH phases in the blends changed gradually from spherical droplets to fibrils with the increase of THH content. The flow behavior of the blends are quite different from that of the parent polymers and a very dramatic reduction in the melt viscosity of blends containing 5% THH was observed. The formation possibility of in-situ reinforcement composites of PA6 blends with a semirigid LCP is discussed in the present paper.  相似文献   

5.
The effects of maleated thermoplastic elastomer (TPEg) on morphological development of polypropylene (PP)/polyamide 6 (PA6) blends with a fixed PA6 content (30 wt %) were investigated. For purpose of comparison, nonmaleated thermoplastic elastomer (TPE) was also added to the above binary blends. A comparative study of FTIR spectroscopy in above both ternary blends confirmed the formation of in situ graft copolymer in the PP/PA6/TPEg blend. Dynamic mechanical analysis (DMA) indicated that un‐like TPE, the incorporation of TPEg remarkably affected both intensity and position of loss peaks of blend components. Scanning electron microscopy (SEM) demonstrated that PP/PA6/TPE blends still exhibited poor interfacial adhesion between the dispersed phase and matrix. However, the use of TPEg induced a finer dispersion and promoted interfacial adhesion. Transmission electron microscopy (TEM) for PP/PA6/TPEg blends showed that a core‐shell structure consisting of PA6 particles encapsulated by an interlayer was formed in PP matrix. With the concentration of TPEg increasing, the dispersed core‐shell particles morphology was found to transform from discrete acorn‐type particles to agglomerate with increasing degree of encapsulation. The modified Harkin's equation was applied to illustrate the evolution of morphology with TPEg concentration. “Droplet‐sandwiched experiments” further confirmed the encapsulation morphology in PP/PA6/TPEg blends. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1050–1061, 2006  相似文献   

6.
Poly(lactic acid) (PLA) and polypropylene (PP) blends of various proportions were prepared by melt-compounding. The miscibility, phase morphology, thermal behavior, and mechanical and rheological properties of the blends were investigated. The blends were immiscible systems with two typical morphologies, spherical droplet and co-continuous, and could be obtained at various compositions. Complex viscosity, storage modulus and loss modulus depend on the PP content. Thermal degradation of all blends led to two weight losses, for PLA and PP. The incorporation of PP improved the thermal stability of the blend. The effect of compatibilizer (ethylene-butyl acrylate-glycidyl methacrylate terpolymer, EBA-GMA) on the morphology and mechanical properties of 70/30 w/w PLA/PP blends was investigated. The tensile strength of these blends reached a maximum for 2.5 wt% EBA-GMA, and impact strength increased with increasing EBA-GMA content, suggesting that EBA-GMA is an effective compatibilizer for PLA/PP blends.  相似文献   

7.
Blends of ethylene‐glycidyl methacrylate copolymer (PE‐GMA) and polyamide 6 (PA6) were prepared in a corotating twin screw extruder. Two processing temperatures were used in order to disperse PA6 in two forms: at high temperature in the molten state in molted PE‐GMA Matrix (emulsion type mixture) and at lower temperature as fillers in molted PEGMA matrix (suspension type mixture). Processed blends were analyzed by scanning electron microscopy and dynamic mechanical experiments to probe the reactivity in the extruder and the compatibilization phenomena. The dependence of the morphology and the rheological properties of PE‐GMA/PA6 blends on blend composition and screw rotational speed was also investigated and is discussed in the paper. The results show that dispersion of the two polymers in the molten state leads to a higher level of interfacial reaction. They also show that whatever the screw rotational speed and the temperature of extrusion are, the rate of interfacial reaction in PE‐GMA/PA6 blends is higher for 50/50 PE‐GMA/PA blends than for 70/30 PE‐GMA/PA blends. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The impact of small amounts of organomodified clay (OMMT) on the photo-degradation behaviour of two blends obtained by mixing either low-density polyethylene (LDPE) or high density polyethylene (HDPE) with polyamide 6 (PA6) (LDPE/PA6 and HDPE/PA6 75/25 wt-%) was studied. The complex photo-degradation behaviour was followed by monitoring the main physical-mechanical properties of the blends. In particular, mechanical and spectroscopic tests were performed in conditions of accelerated artificial aging. An accurate mechanical and morphological characterization was previously carried out. The presence of the OMMT promotes the unexpected formation of a co-continuous morphology for the HDPE/PA6 blend without significantly improving the interfacial adhesion. Differently, the OMMT-filled LDPE/PA6 blend exhibits a finely distributed morphology, and some apparent improvement of the interfacial adhesion was noticed. Probably due to these differences in microstructure, a different impact of the nanoparticles on the photo-resistance behaviours was observed for the two families of samples. In particular, the HDPE-based nanocomposite blend exhibits an improved photo-resistance, while the opposite occurs for the LDPE-based system.  相似文献   

9.
The influence of quiescent molten-state annealing process on the phase structure and morphology of poly(propylene)/poly(ethylene-co-octene) blends with co-continuous morphology was studied using scanning electron microscopy (SEM). The structure parameter called characteristic length (L) was calculated by the pattern analysis of SEM micrographs to describe morphological variation with annealing time during molten-state annealing process under quiescent condition. Moreover, the potential fractal behavior of the phase structure and morphology of PP/PEOc?=?50/50 blend during the process were discussed. The histograms of P(L/L m ) obtained at various annealing time fell on a master curve, demonstrating the self-similar growth of the phase structure of the blends during quiescent molten-state annealing process.  相似文献   

10.
Adverse effects of a high‐water absorption rate on properties of a glass fiber–reinforced polyamide 6 (GF‐PA6) composite significantly reduce performance and limit application in humid environments. In this paper, a polyfunctional silane (PFS) coupling agent with amino (–NH2) and imino (–NH) groups and styrene acrylonitrile copolymer (SAN) were added to a composite, GF‐PA6, to prepare GF‐PA6/SAN/PFS composites via melt blending in a twin‐screw extruder. The effects of SAN and PFS content on the static and dynamic mechanical properties of the composites before and after water absorption were investigated in detail. The microstructure of the fracture surface was analyzed by a scanning electron microscope (SEM). The results show that the addition of SAN and PFS could effectively inhibit water absorption of the GF‐PA6 composites. The alkoxyl groups on PFS reacted chemically with the nitrile groups of SAN, which enriched SAN on the interface between the fiber and matrix during the extrusion and mixing process to improve the effect of water prevention. Therefore, the mechanical properties of the wet state were notably improved while preventing water from permeating the interface by only the addition of a small amount of SAN and PFS. Dynamic mechanical analysis (DMA) results showed that the addition of PFS improved the compatibility of PA6 with SAN and enhanced the interface adhesion between fiber and PA6. In terms of test result of the comprehensive performance, 10 phr SAN with 0.6 phr PFS was the best dosage.  相似文献   

11.
This work presents the investigation of properties of polyamide‐6 (PA‐6)/ethylene vinyl alcohol (EVOH)/styrene‐ethylene‐butylene‐styrene (SEBS) ternary blends and related nanocomposites with nanoclays. In this way, the effect of the mixing protocol and nanoclay type on the morphology, mechanical, and rheological properties of the blends was comprehensively studied. Scanning electron microscopy (SEM) observation revealed that, for the neat ternary blends, core‐shell droplets were formed in which SEBS droplets were encapsulated by EVOH phase in the PA‐6 matrix. In this regard, experimental observations were compared and discussed with the predictions of phenomenological models. According to the X‐ray diffraction analysis, the distribution and degree of dispersion of the nanoclays were significantly influenced by mixing protocol. It was demonstrated that competition between the intrinsic effect of the nanoclay on the physical properties and its inhibiting effect on the interactions between PA‐6 and EVOH phases led to some interesting observations for the rheological and mechanical properties of the ternary blends. The results revealed that optimum properties could be obtained by selecting appropriate nanoclay and mixing protocol.  相似文献   

12.
The morphology and mechanical and viscoelastic properties of a series of blends of natural rubber (NR) and styrene butadiene rubber (SBR) latex blends were studied in the uncrosslinked and crosslinked state. The morphology of the NR/SBR blends was analyzed using a scanning electron microscope. The morphology of the blends indicated a two phase structure in which SBR is dispersed as domains in the continuous NR matrix when its content is less than 50%. A cocontinuous morphology was obtained at a 50/50 NR/SBR ratio and phase inversion was seen beyond 50% SBR when NR formed the dispersed phase. The mechanical properties of the blends were studied with special reference to the effect of the blend ratio, surface active agents, vulcanizing system, and time for prevulcanization. As the NR content and time of prevulcanization increased, the mechanical properties such as the tensile strength, modulus, elongation at break, and hardness increased. This was due to the increased degree of crosslinking that leads to the strengthening of the 3‐dimensional network. In most cases the tear strength values increased as the prevulcanization time increased. The mechanical data were compared with theoretical predictions. The effects of the blend ratio and prevulcanization on the dynamic mechanical properties of the blends were investigated at different temperatures and frequencies. All the blends showed two distinct glass‐transition temperatures, indicating that the system is immiscible. It was also found that the glass‐transition temperatures of vulcanized blends are higher than those of unvulcanized blends. The time–temperature superposition and Cole–Cole analysis were made to understand the phase behavior of the blends. The tensile and tear fracture surfaces were examined by a scanning electron microscope to gain an insight into the failure mechanism. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2189–2211, 2000  相似文献   

13.
The blends composed of polyamide 6 (PA6) and polyamide 66 (PA66) were obtained using two different preparation methods, one of which was the melt‐mixing through a twin‐screw extruder and the subsequent injection molding; and the other, the in situ blending through anionic polymerization of ε‐caprolactam in the presence of PA66. For the former, there existed a remarkable improvement in toughness but a drastic drop in strength and modulus; however, for the latter, a reverse but less significant trend of mechanical properties change appeared. Various characterizations were conducted, including the analyses of crystalline morphology, crystallographic form, and crystallization and melting behaviors using polarized optical microscopy (POM), wide‐angle X‐ray diffraction (WAXD), and differential scanning calorimetry (DSC), respectively; observation of morphology of fractured surface with scanning electron microscope (SEM); measurement of glass transition through dynamic mechanical analysis (DMA); and the intermolecular interaction as well as the interchange reaction between the two components by Fourier transform infrared spectrometry (FT‐IR) and 13C solution NMR. The presence and absence of interchange reaction was verified for the in situ and melt‐mixed blends, respectively. It is believed that the transreaction resulted in a drop in glass transition temperature (Tg) for the in situ blends, contrary to an increase of Tg with increasing PA66 content for the melt‐mixed ones. And the two kinds of fabrication methods led to significant differences in the crystallographic form, spherulite size and crystalline content and perfection as well. Accordingly, it is attempted to explain the reasons for the opposite trends of changes in the mechanical properties for these two blends. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1176–1186, 2007  相似文献   

14.
Polyurethane/polyhedral oligomeric sisesquioxane (PU/POSS) nanocomposites were syn-thesized via polymerization utilizing the compatibility between POSS nanoparticles and 4,4'-diphenyl methylene diisocyanate. Scanning electron microscope images and Fouriertransform infrared spectra revealed that POSS nanoparticles were dispersed in PU matrix.Thermal gravimetric analysis was employed to investigate the thermal decomposition be-havior of PU/POSS nanocomposites at elevated temperatures. Then fire performance wasevaluated by limiting oxygen index, underwriters laboratories 94 testing and char residue morphology. These results showed that the addition of POSS promoted the formation of char residues which were covered on the surface of polymer composites, leading to the im-provement of thermal stability and flame retardancy.  相似文献   

15.
This paper describes the 70/30 wt% composition of SAN/PA6 blends having different types of morphology, namely PA6 dispersed in SAN, a co-continuous structures of PA6 and SAN, and a “mixed structure” which exhibits PA6 particles in SAN which themselves form the matrix for smaller SAN particles. These morphologies were achieved by using different processing conditions during extrusion blending in a twin screw extruder, especially variation in the screw speed and by injection molding. Morphological analysis using SEM and TEM, solubility experiments, DMA, and oscillatory rheometry are presented. These methods were shown to be able to distinguish between the different types of morphology. In addition, DSC was used to detect the PA6 crystallization behavior.  相似文献   

16.
Combining the excellent mechanical strengths of polyamide 6 (PA6) with the low water absorption of poly(butylene terephthalate) (PBT) was supposed to be a feasible way to prepare a high comprehensive performance material. However, the poor compatibility between PA6 and PBT resulted in low‐notched impact strength of PA6/PBT blends. Poly(n‐butyl acrylate)/poly(methyl methacrylate‐co‐methacrylic acid) (PBMMA), a core‐shell structured modifier with controlled particle sizes, was prepared by seed emulsion polymerization and confirmed by Transmission electron microscope (TEM). The PBMMA particles as toughening modifier and compatilizer were employed to toughen PA6/PBT blends. The notched impact strength of the PA6/PBT blends was significantly increased and the water absorption was reduced with the addition of PBMMA particles. With 23.0 wt% modifier loading, the notched impact strength of the blends was 25.66 kJ/m2, which was 4.04 times higher than that of pure PA6/PBT. Meanwhile, the water absorption of the blends was only 1.3%, dropping 53.6% compared with pure PA6 and reducing by 26.6% than PA6/PBT. Scanning electron microscope results showed that the PBMMA particles were dispersed in the PA6/PBT blends homogeneously, and the toughening mechanism was the cavitation of rubber particles and shear yielding of the matrix. Thermo‐gravimetric analysis analysis demonstrated that the compatibility between PA6 and PBT was improved with the addition of core‐shell PBMMA particles. The core‐shell particles could be used as an effective modifier to achieve the high toughness and low water absorption for PA6/PBT blends. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The morphological stability of polystyrene high-density polyethylene (PS/PE) blend is investigated in the region of dual-phase continuity. The effect of the addition of a triblock SEBS copolymer to the blends on the stability of these morphologies, is examined. The results show that the morphology of the unmodified blends changes from co-continuous to droplet matrix for PS-rich blends whereas the morphology of a 50/50 blend maintains continuity but coarsened significantly upon annealing at 200°C. In the presence of the copolymer, these morphologies are much more stable. Selective solvent extraction of polystyrene in di-ethyl ether reveals that the level of PS continuity in the 50/50 blend is higher for the unmodified system than for the modified one. Upon annealing, the level of PS continuity significantly increases for the unmodified 50/50 PS/PE blend. The effect of the copolymer content in the blend on the interfacial tension between the two components is also investigated using the breaking thread method. The interfacial tension is found to be reduced from 5.6 to 1.1 mN/m by the addition of 20 parts of the copolymer to the blend. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
The preparation process-dependent phase morphology of blends composed of nylon 6 and acrylonitrile-butadiene- styrene(ABS)over a composition range of 30-70 wt% using a styrene-maleic anhydride(SMA)copolymer as the compatibilizing agent with a constant content(5phr)was investigated.The results of the scanning electron microscope (SEM)observation revealed that compared with the binary blends of nylon 6 and ABS,the existence of SMA caused a composition shift of phase inversion to a higher weight fraction of...  相似文献   

19.
SMA、OMMT对PA6/ABS共混物聚集态结构及性能影响的研究   总被引:2,自引:0,他引:2  
采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)等手段研究了苯乙烯-马来酸酐共聚物(SMA)、有机蒙脱土(OMMT)对尼龙6(PA6)/丙烯腈-丁二烯-苯乙烯(ABS)共混物体系聚集态结构及性能的影响.结果表明,SMA与OMMT的加入均可提高PA6/ABS共混物体系的强度及模量,但加入OMMT后共混物的韧性有所下降,而PA6/ABS/SMA共混物的韧性随SMA含量的增加呈上升趋势.SMA、OMMT对PA6/ABS共混体系都有细化ABS分散相的作用,随SMA加入量的增加,ABS分散相尺寸逐渐减小,分布趋于均匀;当OMMT加入量在4 phr以内时,对ABS分散相粒径影响不大,超过4 phr后,随着OMMT含量的增加,ABS分散相的尺寸逐渐减小.XRD与TEM的分析结果表明,对PA6/OMMT(100/5)共混物,OMMT主要以剥离形态分布,同时也存在少量OMMT聚集体;PA6/ABS/OMMT共混物中OMMT则基本以剥离形态选择分布在PA6基体相中.  相似文献   

20.
The isothermal and non-isothermal crystallization kinetics of pure poly(ε−caprolactone) (PCL) and its blends with crosslinked tung oil were investigated as a function of composition, crystallization temperature, and heating rate using differential scanning calorimetric (DSC). The PCL/tung oil semi-interpenetrating polymer networks of different compositions were prepared via cationic polymerization of tung oil in the presence of homogenous solutions of PCL. This unique and relatively new in-situ polymerization and compatibilization blending technique created nano/micro-scale morphologies that cannot be obtained with the traditional melt-processing and/or solvent casting methods. Blends with different miscibility, phase behaviors, and morphologies (miscible, partially miscible, and immiscible) were observed as a function of composition with a constant concentration of boron trifluoride diethyl etherate (BFE) cationic initiator. The morphology of the semi-interpenetrating polymer networks was performed using scanning electron microscopy (SEM). Miscible blends with a single Tg for PCL ≤ 10 wt.%. were observed. While, on the other hand, partially miscible blends with two distinct Tgs and nanoscale morphologies and average particle sizes as small as 100 nm were observed for blends with 20 ≤ PCL wt.% ≤ 30. Immiscible blends with microscale highly interconnected, co-continuous two-phase morphology and two distinct Tgs were detected for 50 wt.% PCL. Both isothermal and non-isothermal crystallization kinetics were strongly influenced by the different miscibility and morphology of the blends. The isothermal and non-isothermal crystallization kinetics of PCL/tung oil blends were analyzed on the basis of Avrami and modified Avrami approaches, respectively. A substantial decrease in the isothermal (longer half time) and non-isothermal (Tm shifted to lower temperature) crystallization kinetics was observed as the concentration of PCL increased in the blends up to 30 wt.% due to the partially miscibility of the blends in this composition range. In a contrast, for 50 wt.% PCL blend, a considerable increase in the crystallization kinetics (isothermal and non-isothermal) was detected due to the highly interconnected, co-continuous two-phase morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号