首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By the incorporation of propargyl and methylol groups on to novolac backbone, a series of addition-curable phenolic resins and condensation-addition dual-cure type phenolic resins (novolac modified by propargyl groups referred as PN, and novolac modified by propargyl and methylol groups simultaneously referred as MPN) were synthesized. The processing characteristics, thermal cure and catalytic cure behavior for both resins were investigated mainly by means of viscosity measurement and non-isothermal differential scanning calorimetry (DSC) techniques. The effect of propargyl and methylol content of PN and MPN, the molecular weight and the configuration of the parent novolac, on the processing and cure behavior was studied in details. Processing parameters and curing kinetic parameters were obtained. Both resins exhibit excellent processing properties. Thermal cure of PN resins possessed one cure mechanism and that of MPN resins possessed two cure mechanisms according to DSC analysis. The dual-cure-type mechanism made MPN resins superior to PN resins in terms of a mild and controllable cure process. Compared with thermal cure, catalytic cure of PN resins showed lower initiation temperature and cure temperature by about 60 °C. These novel resins have a bright prospect of application as matrix for thermal-structural composite materials.  相似文献   

2.
Urea–formaldehyde (UF) and phenol–formaldehyde (PF) resins are the most widely used wood adhesives. The first stage in resin manufacturing is the formation of methylol derivatives which polycondensation leads to building the tridimensional network. Understanding the behaviour of methylol compounds in curing provides useful information for developing appropriate resin structures. Thermal behaviour of N,N′-dihydroxymethylurea, 2- and 4-hydroxymethylphenols, urea and phenol as model compounds for UF, PF and phenol–urea–formaldehyde (PUF) resins was followed by TG-DTA method. The measurements were carried out by the labsys instrument Setaram at 30–450 °C in nitrogen flow. The characteristic signals for model compounds and for some reaction mixtures were measured by high resolution 13C NMR spectroscopy.  相似文献   

3.
Changes in curing behaviour of aminoresins during storage   总被引:2,自引:0,他引:2  
Summary The curing behaviour of commercial UF and MUF resins, stored at room temperature nearly up to gelation, is studied by simultaneous TG-DTA technique and structural changes of resins are also followed during aging. On the basis of 13C NMR spectra, the main chemical reaction during UF resin storage is the formation of methylenes and dimethylene ethers linked to secondary amino groups. Aging of resins results in a decrease of cure rate which is related to lower concentration of active functional groups and decrease in molecular mobility. On DTA curve, the resin with higher content of methylol groups reveals the curing exotherm earlier. With decreasing methylol content during storage, the peak maximum of exotherm is shifted to higher temperature value. Advanced polycondensation and sedimentation processes during storage produce partly locked in macromolecule structure water, and the water evaporation endotherm on DTA curve shifts to considerably higher temperature. The aged MUF resins are chemically less changed than UF resins and the aging process mainly involves noncovalent network formation due to complex molecular structure.  相似文献   

4.
A series of M/MgO (M?=?CaO, KNO3, KOH, K2CO3) catalysts were prepared by a dry impregnation method and used for synthesis of glycerol carbonate from glycerol and dimethyl carbonate. It was found that K2CO3/MgO was the most efficient catalyst, with a glycerol carbonate yield of approximately 99% under the conditions: DMC/glycerol molar ratio 2.5:1, catalyst/raw material weight ratio 1%, reaction time 2?h, and reaction temperature 80?°C. FTIR, BET, TEM, and XRD were used for characterization of the catalyst and showed that the active sites seemed to be K2O formed on the K2CO3/MgO catalyst. Finally, a recycling experiment showed that the catalyst was relatively stable and could be reused up to four times, at least, by regeneration.  相似文献   

5.
Under solvent-free conditions, the synthesis of camphorquinoxaline and quinoxaline derivatives catalyzed by various solid metal oxides (ZnO, TiO2, ZrO2, MgO, acidic and basic Al2O3, and CaO) and salts (K2CO3, CaCO3) is described. In the cases of ZnO, TiO2, and ZrO2, the catalysts can be recovered and reused several times without losing activity.  相似文献   

6.
This article was written for the purpose of investigating the mechanisms of reactions between unsaturated polyester resins and base anhydridelike metal oxides (CaO, MgO, ZnO) which cause an increase in viscosity. As a model system ethyl-hydrogen-succinate (ESH) and ZnO were reacted in CCl4 and complexes that contained Zn-hydroxocarboxylate units took an essential part in this reaction. Solubility measurements of the model compounds and infrared (IR) spectra of the reaction products led to the conclusion that further molecular associates were formed from the mixed metal-hydroxocarboxylate complex by the carbonyl oxygens of ester groups, which resulted in end products of polymeric structure. It is suggested by IR spectroscopical analogies between the model compounds and reaction products of an adipic acid/butanediol-1,4 polyester with ZnO that similar reactions can account for the polyesters as well.  相似文献   

7.
The preparation of synthesis gas from carbon dioxide reforming of methane (CDR) has attracted increasing attention. The present review mainly focuses on CDR to produce synthesis gas over Ni/MOx/Al2O3 (X = La, Mg, Ca) catalysts. From the examination of various supported nickel catalysts, the promotional effects of La2O3, MgO, and CaO have been found. The addition of promoters to Al2O3-supported nickel catalysts enhances the catalytic activity as well as stability. The catalytic performance is strongly dependent on the loading amount of promoters. For example, the highest CH4 and CO2 conversion were obtained when the ratios of metal M to Al were in the range of 0.04–0.06. In the case of Ni/La2O3/Al2O3 catalyst, the highest CH4 conversion (96%) and CO2 conversion (97%) was achieved with the catalyst (La/Al = 0.05 (atom/atom)). For Ni/CaO/Al2O3 catalyst, the catalyst with Ca/Al = 0.04 (atom/atom) exhibited the highest CH4 conversion (91%) and CO2 conversion (92%) among the catalysts with various CaO content. Also, Ni/MgO/Al2O3 catalyst with Mg/Al = 0.06 (atom/atom) showed the highest CH4 conversion (89%) and CO2 conversion (90%) among the catalysts with various Mg/Al ratios. Thus it is most likely that the optimal ratios of M to Al for the highest activities of the catalysts are related to the highly dispersed metal species. In addition, the improved catalytic performance of Al2O3-supported nickel catalysts promoted with metal oxides is due to the strong interaction between Ni and metal oxide, the stabilization of metal oxide on Al2O3 and the basic property of metal oxide to prevent carbon formation.  相似文献   

8.
Screening was performed of metal oxides (MgO, CaO, ZnO, BaO, Al2O3, TiO2, ZrO2) and salts (CaCO3, K2CO3, ZrSiO4) as active surfaces for the reaction of ethynylation of 4,5,6,7-tetrahydroindole with ethyl bromopropynoate and bromobenzoylacetylene. It was established that Ca, Mg, Zn, and Ba oxides assist the ethynylation of 4,5,6,7-tetrahydroindole, and their activity in the reaction with ethyl bromopropynoate considerably exceeds that of aluminum oxide. The ethynylation is accompanied with the formation of intermediate E-2-(1-bromoethenyl)-4,5,6,7-tetrahydroindole and side 1,1-di(4,5,6,7-tetrahydroindol-2-yl)ethenes and 1,1-di(4,5,6,7-tetrahydroindol-2-yl)bromoethanes.  相似文献   

9.
A total of 13 of the 16 possible methylol derivatives of 2,4′‐ and 4,4′‐dihydroxydiphenylmethane have been synthesized, isolated, and identified. These compounds are found as intermediates in the cure process of resol phenol–formaldehyde (PF) resins. Analysis of the 13C NMR spectra (in acetone‐d6) of these compounds provided a way to evaluate the seven methylolphenol ring types (methylol derivatives of 2‐hydroxyphenyl and 4‐hydroxyphenyl rings) found in typical resol PF resins using the ipso carbon region from 150 to 160 ppm. A simple diagnostic test was developed using the chemical shift values of the methylol methylene carbon atoms to identify the presence of intermediates containing either a 2‐hydroxyphenyl or a 4‐hydroxyphenyl ring. Using these data it is now possible to analyze the major components in extracted prepreg PF resins. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, the structure and thermal properties of aluminosilicate fritted glazes in SiO2–Al2O3–CaO–MgO–Na2O–K2O–ZnO system with (4.0 mol%) and without addition of ZnO were examined by GIXRD, FTIR, MAS-NMR and thermal methods (DTA, DIL). It has been found that the all experimental glazes are amorphous material (transparent glazes). On the base of spectroscopic investigations, it was found that zinc ions exist in the network glazes in the octahedral coordination—Zn2+ ions play a network modifier role in structure of glazes. An analysis of the data obtained from thermal tests showed that addition of ZnO into chemical composition results in decrease in glass transition temperature value (T g) for all glazes (DTA, DIL). The coefficient of thermal expansion (α) is decreased as the whole measurement range for one series of fritted glazes.  相似文献   

11.
A novel structured La2O3/AAO solid base catalyst was prepared by supporting lanthanum oxide (La2O3) on the surface of anodic aluminum oxide (AAO) under hydrothermal conditions. Catalytic activity of the catalyst was tested using self-condensation of acetone to diacetone alcohol as a probe reaction. The conversion of acetone reached 4.14% with the diacetone alcohol selectivity of 98%. The catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), thermogravimetric analysis (TGA), N2 adsorption-desorption (BET), and temperature programmed desorption (CO2-TPD). XRD patterns and SEM images indicated that La2O3 nanoscale particles with high crystallinity were uniformly distributed over the AAO surface. The results of CO2-TPD showed that the calcination temperature led to the formation of medium-strength basic sites, strong basic sites, and to an increase of the basic strength. The strong basic sites and large basic strength are an important factor that influences the catalytic activity in the self-condensation of acetone to diacetone alcohol.  相似文献   

12.
不同沉淀剂制备CuO-ZnO催化剂甲醛乙炔化反应性能   总被引:1,自引:1,他引:0  
分别以NaOH、Na2CO3、NaHCO3为沉淀剂,采用共沉淀法制备了Cu:Zn摩尔比为2:1的CuO-ZnO催化剂,利用氢气程序升温还原(H2-TPR)、热重(TG)、X射线衍射(XRD)及拉曼光谱(Raman)等技术对催化剂进行了表征,结合甲醛乙炔化活性评价,研究了沉淀剂对催化剂结构及催化性能的影响.结果表明,不同沉淀剂对催化剂中活性组分分散度有较大影响,进而在甲醛乙炔化合成1,4-丁炔二醇反应中表现出不同的催化活性.以Na2CO3为沉淀剂制备的催化剂中形成CuO-ZnO固溶体,提高了CuO的分散度及Cu+在还原性气氛下的稳定性,经活化后可生成较多的活性物种炔化亚铜,表现出最佳的炔化反应活性与1,4-丁炔二醇选择性.  相似文献   

13.
Thermal properties of raw aluminosilicate ceramic glazes in the multicomponent system of SiO2–Al2O3–CaO–K2O–Na2O–ZnO modified by ZnO addition were studied by differential thermal analysis (DTA), dilatometry (DIL), hot-stage microscopy (HSM), X-ray diffraction and fourier transform infrared spectroscopy (FTIR). Using the method of differential thermal analysis, the ways in which zinc oxides affect the temperature of transition (T g), crystallisation (T c) were determined. An analysis of the DTA data obtained during thermal tests showed that an increase in ZnO content results in decreasing the T g value. Also, the influence of ZnO on characteristic temperatures and viscosity of glazes was checked. The introduction of zinc oxide (ZnO) into the glaze composition contributes to the decrease in viscosity of such glazes. An increasing ZnO content in the glazes also causes the reduction in softening (T s), half-sphere (T half-sphere) and fusion (T fusion) temperatures. The mid-infrared spectroscopy showed that the thermal properties of glazes in SiO2–Al2O3–CaO–K2O–Na2O–ZnO system modified by addition of ZnO can be associated with the depolymerising influence of zinc ions on the structure of the tested glazes.  相似文献   

14.
Electrochemical reduction of N2 to NH3 is a promising method for artificial N2 fixation, but it requires efficient and robust electrocatalysts to boost the N2 reduction reaction (NRR). Herein, a combination of experimental measurements and theoretical calculations revealed that a hybrid material in which ZnO quantum dots (QDs) are supported on reduced graphene oxide (ZnO/RGO) is a highly active and stable catalyst for NRR under ambient conditions. Experimentally, ZnO/RGO was confirmed to favor N2 adsorption due to the largely exposed active sites of ultrafine ZnO QDs. DFT calculations disclosed that the electronic coupling of ZnO with RGO resulted in a considerably reduced activation-energy barrier for stabilization of *N2H, which is the rate-limiting step of the NRR. Consequently, ZnO/RGO delivered an NH3 yield of 17.7 μg h−1 mg−1 and a Faradaic efficiency of 6.4 % in 0.1 m Na2SO4 at −0.65 V (vs. RHE), which compare favorably to those of most of the reported NRR catalysts and thus demonstrate the feasibility of ZnO/RGO for electrocatalytic N2 fixation.  相似文献   

15.
Transesterification of ethyl butyrate with methanol using MgO/CaO catalysts   总被引:1,自引:0,他引:1  
A series of mixtures of MgO/CaO with different Mg/Ca molar ratios (between 3 and 15), as well as the corresponding pure oxides, was prepared by the coprecipitation method in a basic medium and subsequent calcination. Their textural and structural characterization was carried out by using XRD, FT-IR, SEM and N2 sorption at 77 K. The alkalinity was studied by CO2-TPD and catalytic decomposition of 2-propanol. The MgCa oxides obtained after calcination at 1073 K exhibit X-ray diffraction patterns with clearly visible signals corresponding to crystalline CaO and MgO. Textural properties are improved by the presence of Mg, with the porosity increased and the particle sizes decreased with respect to pure CaO. FT-IR spectroscopy reveals the presence of surface carbonate. These catalysts are active in the transesterification of ethyl butyrate with methanol at 333 K and atmospheric pressure, a model reaction to evaluate the potential of these basic catalysts in triglycerides transesterification for biodiesel production. The highest activity was found for a Mg:Ca molar ratio of 3, with conversion close to 60%, whereas MgO was inactive. Moreover, lixiviation of the active phase was not observed thus excluding the contribution of the homogeneous catalysis to the studied transesterification process.  相似文献   

16.
For a series of pyroxenic basalt-based glasses, DTA was used to elucidate the changes occurring on including specified oxidizing agents and rectifying oxides Na2O and/or CaO, or CaO+MgO to modify one or more of the ratios FeO:Fe2O3, CaO:Na2O and CaO:MgO that affect the monominerality and crystallization behaviour. From comparisons of the positions, characters and intensities of the DTA peaks, the effects of the rectifying component on the crystallization processes were readily demonstrated. The higher crystallizabilities exhibited when MnO2 was used as oxidizing agent and Na2O and/or MgO as rectifying oxides were related to their effects in reducing the viscosity of the glass and in enhancing the nucleation rate of the glass.  相似文献   

17.
Recent progress in photocatalytic decomposition of water to H2 and O2 using simple oxide semiconductor catalysts has been reviewed. Addition of Na2CO3 to Pt/TiO2 suspension in water enhanced the stoichiometric decomposition significantly. This Na2CO3 addition method has been proved to be very useful to accelerate water splitting over various kinds of oxide semiconductor photocatalysts. The role of CO3 2– anion on the acceleration of water splitting was clarified. Finally, it was firstly demonstrated in the world that water was decomposed efficiently and stoichiometrically to H2 and O2 using a 3 wt% NiOx/TiO2 photocatalyst under real solar light irradiation in Tsukuba, Japan by this Na2CO3 addition method.  相似文献   

18.
Bifunctional metalloporphyrins with quaternary ammonium bromides (nucleophiles) at the meta, para, or ortho positions of meso‐phenyl groups were synthesized as catalysts for the formation of cyclic carbonates from epoxides and carbon dioxide under solvent‐free conditions. The meta‐substituted catalysts exhibited high catalytic performance, whereas the para‐ and ortho‐substituted catalysts showed moderate and low activity, respectively. DFT calculations revealed the origin of the advantage of the meta‐substituted catalyst, which could use the flexible quaternary ammonium cation at the meta position to stabilize various anionic species generated during catalysis. A zinc(II) porphyrin with eight nucleophiles at the meta positions showed very high catalytic activity (turnover number (TON)=240 000 at 120 °C, turnover frequency (TOF)=31 500 h?1 at 170 °C) at an initial CO2 pressure of 1.7 MPa; catalyzed the reaction even at atmospheric CO2 pressure (balloon) at ambient temperature (20 °C); and was applicable to a broad range of substrates, including terminal and internal epoxides.  相似文献   

19.
Recent progress in photocatalytic decomposition of water to H2 and O2 using simple oxide semiconductor catalysts has been reviewed. Addition of Na2CO3 to Pt/TiO2 suspension in water enhanced the stoichiometric decomposition significantly. This Na2CO3 addition method has been proved to be very useful to accelerate water splitting over various kinds of oxide semiconductor photocatalysts. The role of CO3 2? anion on the acceleration of water splitting was clarified. Finally, it was firstly demonstrated in the world that water was decomposed efficiently and stoichiometrically to H2 and O2 using a 3 wt% NiOx/TiO2 photocatalyst under real solar light irradiation in Tsukuba, Japan by this Na2CO3 addition method.  相似文献   

20.
A new class of high‐performance resins of combined molecular structure of both traditional phenolics and benzoxazines has been developed. The monomers termed as methylol‐functional benzoxazines were synthesized through Mannich condensation reaction of methylol‐functional phenols and aromatic amines, including methylenedianiline (4,4′‐diaminodiphenylmethane) and oxydianiline (4,4′‐diaminodiphenyl ether), in the presence of paraformaldehyde. For comparison, other series of benzoxazine monomers were prepared from phenol, corresponding aromatic amines, and paraformaldehyde. The as‐synthesized monomers are characterized by their high purity as judged from 1H NMR and Fourier transform infrared spectra. Differential scanning calorimetric thermograms of the novel monomers show two exothermic peaks associated with condensation reaction of methylol groups and ring‐opening polymerization of benzoxazines. The position of methylol group relative to benzoxazine structure plays a significant role in accelerating polymerization. Viscoelastic and thermogravimetric analyses of the crosslinked polymers reveal high Tg (274–343 °C) and excellent thermal stability when compared with the traditional polybenzoxazines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号