首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new aromatic diacid monomer viz., 4-(4′-carboxyphenoxy)-2-pentadecylbenzoic acid was synthesized starting from cardanol and was characterized by FTIR, 1H- and 13C NMR spectroscopy. A series of new aromatic polyamides containing ether linkages and pendant pentadecyl chains was prepared by phosphorylation polycondensation of 4-(4′-carboxyphenoxy)-2-pentadecylbenzoic acid with five commercially available aromatic diamines viz., 1,4-phenylenediamine, 4,4′-oxydianiline, 4,4′-methylenedianiline, 1,3-phenylenediamine, and 4,4′-(hexafluoroisopropylidene)dianiline. Inherent viscosities of the polyamides were in the range 0.45-0.66 dL/g in N,N-dimethylacetamide at 30 ± 0.1 °C. The introduction of ether linkages and pendant pentadecyl chains into polyamides led to an enhanced solubility in N,N-dimethylacetamide and 1-methyl-2-pyrrolidinone at room temperature or upon heating. The polyamides could be solution-cast into tough, flexible and transparent films from their N,N-dimethylacetamide solution. Wide angle X-ray diffraction patterns exhibited broad halo indicating that the polymers were essentially amorphous in nature. X-Ray diffractograms also displayed a diffuse to sharp reflection in the small-angle region (2θ = ∼2-5°) for the polyamides characteristics of formation of loosely to well-developed layered structure arising from packing of flexible pentadecyl chains. The glass transition temperature observed for the polyamides was in range 139-189 °C. The temperature at 10% weight loss (T10), determined by TGA in nitrogen atmosphere, of the polyamides was in the range 425-453 °C indicating their good thermal stability.  相似文献   

2.
Two new diacid monomers, 2,2′-sulfide bis(4-methyl phenoxy acetic acid) and 2,2′-sulfoxide bis(4-methyl phenoxy acetic acid) were successfully synthesized by refluxing the 2,2′-sulfide bis(4-methyl phenol) and 2,2′-sulfoxide bis(4-methyl phenol) with chloroacetonitrile in the presence of potassium carbonate, and subsequent basic reduction. Two novel series of poly(sulfide-ether-amide)s and poly(sulfoxide-ether-amide)s with aliphatic units in the main chain were prepared from diacids with various diamines.The polyamides were obtained in quantitative yields and their inherent viscosities were in the range of 0.43-0.89 dl g−1 at a concentration of 0.5 g dl−1 in N,N-dimethylacetamide (DMAc) solvent at 25 °C. They showed good thermal stability. The temperature for 10% weight loss in argon atmosphere was in the range of 350-415 °C. The polymers showed glass transition temperatures between 228 and 261 °C. Almost all of the polyamides were readily soluble in a variety of polar solvents such as N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO).  相似文献   

3.
A series of new polyamides were synthesized by direct polycondensation of the 1,6-bis(4-aminophenyl)diamantane with various dicarboxylic acids. The soluble polyamides had high inherent viscosities, ranging from 0.73 to 1.21 dL/g. Polyamides derived from 5-tert-butylisophthalic acid and (±)-1,3-cyclohexanedicarboxylic acid were soluble in N-methyl-2-pyrrolidone (NMP) and pyridine. When NMP and N-dimethylacetamide (DMAc) were added with 3% (w/v) LiCl, the solubilities of polyamides derived from 4,4′-oxybis(benzoic acid) and cis-1,4-cyclohexanedicarboxylic acid were markedly enhanced. Polyamides had tensile strengths of up to 87.8 MPa, elongation to breakage values of up to 19.3%, and initial moduli of up to 2.1 GPa. Dynamic mechanical analysis (DMA) reveals that the polyamides have three relaxations. Their α relaxations occurred at high temperatures, ranging from 380 to 462°C. Three of polyamides exhibited good retention of storage modulus (above 108 Pa) at a temperature exceeding 410°C. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1257–1263, 1998  相似文献   

4.
A novel diimide-diacid (DIDA) monomer, 4-{4-[(4-methyl phenyl) sulphonyl]}-1,3-bis-trimellitoimido benzene containing sulphone and bulky pendant groups was successfully synthesized and used to synthesize a series of wholly aromatic poly(amide-imide)s (PAIs) by direct polycondensation method. The direct polycondensation of newly synthesized DIDA with different diamines was carried out via Yamazaki’s phosphorylation method using triphenyl phosphite and pyridine system. The resulting poly(amide-imide)s were obtained in quantitative yields with inherent viscosities 0.36-0.47 dl/g in DMAc at 30 ± 0.1 °C. The poly(amide-imide)s were amorphous and were readily soluble in various solvents such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), and pyridine. Tough and flexible films were obtained by casting their DMAc solution. According to thermogravimetric analysis, the polymers were fairly stable up to temperature around 396 °C, and 10% weight losses in the temperature range of 476-511 °C that showed good thermal stabilities of these polymers.  相似文献   

5.
A new triphenylamine-containing aromatic diamine monomer, 4-[4-(1-adamantyl)phenoxy]-4′,4″-diaminotriphenylamine, was synthesized from cesium fluoride-mediated N,N-diarylation of 4-(1-adamantyl)-4′-aminodiphenyl ether with 4-fluoronitrobenzene and subsequent reduction of the resultant dinitro compound. Novel electroactive aromatic polyamides and polyimides with adamantylphenoxy-substituted triphenylamine moieties were prepared from the newly synthesized diamine monomer with aromatic dicarboxylic acids and tetracarboxylic dianhydrides, respectively. All the resulting polymers were amorphous and most of them were readily soluble in polar solvents such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc) and could be solution-cast into transparent and strong films with good mechanical properties. These polymers exhibited glass-transition temperatures between 254 and 310 °C, and they were fairly stable up to a temperature above 450 °C for the polyamides and above 500 °C for the polyimides. These polymers exhibited strong UV-vis absorption maxima at 293-346 nm in solution, and the photoluminescence spectra of polyamides showed maximum bands around 408-452 nm in the blue region. Cyclic voltammograms of the polyamide and polyimide films on an indium-tin oxide (ITO)-coated glass substrate exhibited one pair of reversible redox couples at half-wave oxidation potentials (E1/2) around 0.83-0.86 V and 1.12-1.13 V, respectively, versus Ag/AgCl in an acetonitrile solution. All the polymer films revealed good electrochemical and electrochromic stability by repeatedly switching electrode voltages between 0.0 V and 1.1-1.4 V, with coloration change from the pale yellowish neutral state to the green or blue oxidized state.  相似文献   

6.
A new naphthalene-ring containing diamine, bis-[4-(5-amino-naphthalene-1-yloxy)-phenyl]-methanone was prepared from reaction of 5-amino-1-naphthol with 4,4′-dichlorobenzophenone in the presence of K2CO3. A series of novel polyamides were prepared by direct polycondensation of the diamine with various commercially available diacid chlorides including terephthaloyl chloride, isophthaloyl chloride, adipoyl chloride, and sebacoyl chloride. All the synthesized polyamides showed good solubility in amide type solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, and N,N-dimethylformamide and they exhibited inherent viscosities in the range of 0.44-0.52 dL/g. According to the DMTA analysis, the glass transition temperatures of the polyamides were found to be 131-187 °C. Thermogravimetric analysis indicated that the polymers were stable up to 190 °C and the 10% weight loss temperatures were recorded in the range of 350-418 °C in air atmosphere.  相似文献   

7.
A series of novel fluorinated aromatic polyamides derived from a new monomer, 2-(4-trifluoromethylphenoxy)terephthaloyl chloride (TFTPC), with various aromatic diamines were synthesized and characterized. The polyamides were obtained in high yields and moderately high inherent viscosities ranging from 1.07 to 1.16 dL/g. All the polyamides were amorphous and readily soluble in many organic solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N′-dimethylacetamide (DMAc), N,N′-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), and could afford flexible and tough films via solution casting. The cast films exhibited good mechanical properties with tensile strengths of 82.8-107.3 MPa, elongation at break of 4.1-7.2%, and tensile modulus of 2.26-3.95 GPa. These polyamide films also exhibited good thermal stability with the glass transition temperature of 222-294 °C, the temperature at 5% weight loss of 442-472 °C in nitrogen. They exhibited low dielectric constants ranging from 3.25 to 3.39 (1 MHz), low moisture absorption in the range of 1.32-2.45%, high transparency with an ultraviolet-visible absorption cut-off wavelength in the 330-371 nm range, and excellent electrical properties.  相似文献   

8.
This work synthesized a series of new polyamides by direct polycondensation of 1,3-bis[4-(4-carboxyphenoxy)phenyl]adamantane ( I ) with various diamines. The diacid I was synthesized from 1,3-bis(4-hydroxyphenyl)adamantane in two steps. Polyamides III were soluble in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), and pyridine. The polyamides had medium inherent viscosities of 0.30–0.55 dL/g and number-average molecular weights (Mn) of 22,000–36,000. The polyamides III a and III b had tensile strengths of 59.8 and 77.5 MPa, elongation to breakage values of 5.8 and 7.6%, and initial moduli of 1.9 and 1.8 GPa, respectively. Their glass transition temperatures were found to be 219–295°C by means of differential scanning calorimetry (DSC). Dynamic mechanical analysis (DMA) reveals that the incorporation of rigid and bulky diamantane into polyamides III a and III b leads to high glass transition temperatures (Tgs), at 299 and 286°C, respectively. The decomposition temperatures of polyamides III at a 5% weight loss ranged from 388 to 416°C in air and from 408 to 435°C in N2 atmosphere. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 785–792, 1998  相似文献   

9.
A new diamine, 2,2-bis[4-(4-aminophenoxy)phenyl]norbornane (BAPN), containing both ether and norbornane cardo groups, was synthesized in three steps started from norcamphor. A series of cardo polyamides were obtained by the direct polycondensation of BAPN and various aromatic dicarboxylic acids in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. Polyamides had inherent viscosities in the range of 0.82–1.58 dL g−1, and were readily soluble in polar aprotic solvents such as NMP, N,N-dimethylacetamide (DMAc) and N,N-dimethylformamide and dimethyl sulfoxide. These polymers were cast in DMAc solution into transparent, flexible, and tough films that were further characterized by X-ray and mechanical analysis. All the polymers were amorphous, and the polyamide films had a tensile strength range of 71–89 MPa, an elongation at break range of 5–9%, and a tensile modulus range of 2.0–2.3 GPa. Polyamides showed glass transition temperatures in the range of 256–296°C as measured by DSC and thermogravimetric analysis indicated no weight loss below 450°C in nitrogen and air atmosphere. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2791–2794, 1999  相似文献   

10.
1,3-Diaminoadamantane (I) was used as a monomer with various aromatic dicarboxylic acyl chlorides and dianhydrides to synthesize polyamides and polyimides, respectively. Polyamides having inherent viscosities of 0.10–0.27 dL/g were prepared by low-temperature solution polycondensation. The polyamides were soluble in a variety of solvents such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), pyridine, dioxane, and nitrobenzene. These polyamides had glass transition temperatures in the 179–187°C range and 5% weight loss temperatures occurred at up to 354°C. Polyimides based on diamine I and various aromatic dianhydrides were synthesized by the two-stage procedure that included ring-opening to form polyamic acids, followed by thermal conversion to polyimides. The polyamic acids had inherent viscosities of 0.14–0.38 dL/g. The glass transition temperature of these polyimides were in the 245–303°C range and showed almost no weight loss up to 350°C under air and nitrogen atmosphere. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Mercury(II)-mediated ring closure of N-[1-(2-allyl-3-benzyloxy-4,6-dimethoxyphenyl)ethyl]acetamide 9 afforded N-acetyl-5-benzyloxy-6,8-dimethoxy-1,3-trans-dimethyl-1,2,3,4-tetrahydroisoquinoline 8. The product was shown to exist as a mixture of amide rotamers by NMR spectroscopy, since signals coalesced at higher temperatures. Variable temperature NMR spectroscopy and molecular modelling were used to investigate these rotamers and gave average values for the barrier of rotation in the range of 15-16 kcal mol−1. 2-[2-[1-(Acetylamino)ethyl]-6-(benzyloxy)-3,5-dimethoxyphenyl]-1-methylethyl methanesulfonate 17 was also cyclized with sodium hydride to afford the same rotameric products with the same tetrahydroisoquinoline skeleton, but as a mixture of 1,3-trans- and cis-dimethyl isomers.  相似文献   

12.
An imide ring-containing diamide-dianhydride, N-[3,5-bis(3,4-dicarboxybenzamido)phenyl]phthalimide dianhydride (1) was prepared by the reaction of trimellitic anhydride chloride with N-(3,5-diaminophenyl)phthalimide in a medium consisting of methylene chloride and pyridine. A series of new alternating aromatic poly(amide-imide)s having inherent viscosities of 0.26-0.37 dl/g was synthesized using a two-step poly(amic-acid) precursor method. A reference monomer, 1,3-bis(3,4-dicarboxybenzamido)benzene dianhydride (2) without the phthalimido pendant group attached to the polymer main chain was prepared in order to study the structure-property relationship. In this case, the structure effects on some properties of the resulting poly(amide-imide)s including crystallinity, solubility, thermal stability, and film flexibility could be easily clarified. A diamide-triimide (3) as a model compound was also synthesized by the reaction of new dianhydride 1 with aniline to compare the characterization data as well as to optimize the polymerization conditions. The resulting polymers were fully characterized by FT-IR, UV-visible and 1H NMR spectroscopy. Most of the polymers showed an amorphous nature and were readily soluble in a variety of organic solvents such as N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), and pyridine. The glass-transition temperatures of these polymers were recorded between 301 and 371 °C. All polymers showed no significant weight loss below 500 °C in nitrogen, and the decomposition temperatures at 10 wt.% loss range from 506 to 543 °C. The films of the resulting poly(amide-imide)s could be cast from their NMP solutions, and the transparency and flexibility of them were investigated.  相似文献   

13.
The five benzene rings-containing (hereafter referred to as “five-ring”) dicarboxylic acids α,α′-bis[4-(4-carboxyphenoxy)phenyl]-1,4-diisopropylbenzene (p- III ) and α,α′-bis[4-(4-carboxyphenoxy)phenyl]-1,3-diisopropylbenzene (m- III ) were prepared by the fluoro-displacement of α,α′-bis(4-hydroxyphenyl)-1,4-diisopropylbenzene and α,α′-bis(4-hydroxyphenyl)-1,3-diisopropylbenzene with p-fluorobenzonitrile, and subsequent alkaline hydrolysis of the intermediate dinitriles. A number of high-molecular-weight polyamides based on these two “five-ring” dicarboxylic acids (p- III and m- III ) and various aromatic diamines were directly synthesized in N-methyl-2-pyrrolidone (NMP) containing lithium chloride (LiCl) or calcium chloride (CaCl2) using triphenyl phosphite and pyridine as condensing agents. These polyamides were obtained with inherent viscosities above 0.51 and up to 0.91 dL/g. The weight-average molecular weight were in the range of 51,000–211,000. Most of these polyamides were amorphous and readily soluble in polar solvents such as NMP, N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO), and afforded tough, flexible, and transparent films by solution-casting. The films had tensile strength of 50–83 MPa, elongation to break of 4–8%, and tensile modulus of 1.3–2.0 GPa. Most polyamides showed distinct glass transitions on the differential scanning calorimetry (DSC) curves ranging from 147 to 177°C. In nitrogen or air, all the polymers showed no significant weight loss up to 490°C, as indicated by thermogravimetric analysis (TG). © 1996 John Wiley & Sons, Inc.  相似文献   

14.
A new unsymmetrical aromatic diamine, viz., 4-pentadecylbenzene-1,3-diamine was synthesized through a series of reaction steps starting from 3-pentadecylphenol. 4-Pentadecylbenzene-1,3-diamine was employed to synthesize a series of new polyimides by one-step polycondensation in m-cresol with four commercially available aromatic dianhydrides, viz., 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), 4,4′-oxydiphthalic anhydride (ODPA) and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6-FDA). Inherent viscosities of resulting polyimides were in the range 0.33-0.67 dL/g and number average molecular weights were in the range 14,700-52,200 (GPC, polystyrene standard). Polyimides containing pendent pentadecyl chains were soluble in organic solvents such as chloroform, m-cresol, N,N-dimethylacetamide (DMAc), 1-methyl-2-pyrrolidinone (NMP), pyridine and nitrobenzene. Strong and flexible films of polyimides could be cast from their chloroform solutions. Polyimides exhibited glass transition temperature in the range 158-206 °C. The temperature at 10% wt. loss (T10), determined by TGA in nitrogen atmosphere, of polyimides was in the range 470-480 °C indicating good thermal stability.  相似文献   

15.
A series of macrobicyclic unsymmetrical binuclear copper(II) complexes of compartmental ligands were synthesized from the Schiff base condensation of 1,8[N,N′-bis{(3-formyl-2-hydroxy-5-methyl)benzyl}]-1,4,8,11- tetraaza-5,5,7,12,12,14-hexa methylcyclotetradecane with diamines like 1,2-diamino ethane, 1,3-diamino propane, 1,4-diaminobutane, 1,2-diaminobenzene and 1,8-diaminonaphthalene. The complexes were characterized by elemental and spectral analysis. Electrochemical studies of the copper(II) complexes show two irreversible one-electron reduction processes around E1pc = −0.70 to −1.10 V and E2pc = −0.98 to −1.36 V. ESR spectra of the binuclear copper(II) complexes show a broad signal at g = 2.10 and μeff values in the range 1.46–1.59 BM, which convey the presence of antiferromagnetic coupling. Cryomagnetic investigation of the binuclear complexes [Cu2L3(ClO4)](ClO4) and [Cu2L4(ClO4)](ClO4) show that the observed −2J values are 144 and 216 cm−1, respectively. The observed initial rate (Vin) for the catalytic hydrolysis of p-nitrophenyl phosphate by the binuclear copper(II) complexes were in the range 1.8 × 10−5 to 2.1 × 10−5 Ms−1. The initial rate (Vin) for the catalytic oxidation of catechol to o-quinone by the binuclear copper(II) complexes were in the range 2.7 × 10−5 to 3.5 × 10−5 Ms−1. The copper(II) complexes have been found to promote cleavage of plasmid pBR 322 DNA from the supercoiled form I to the open circular form II.  相似文献   

16.
Two new aromatic diamines containing preformed amide linkages, viz., N,N′-(4-pentadecyl-1,3-phenylene)bis(4-aminobenzamide) I and N,N′-(4-pentadecyl-1,3-phenylene)bis(3-aminobenzamide) II, were synthesized by reaction of 4-pentadecylbenzene-1,3-diamine with 4-nitrobenzoylchloride and 3-nitrobenzoylchloride, followed by reduction of the respective dinitro derivatives. A series of new poly(amideimide)s was synthesized by polycondensation of I and II with four commercially available aromatic dianhydrides, viz., pyromellitic dianhydride (PMDA), 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 4,4′-oxydiphthalic anhydride (ODPA), and 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6-FDA) in N,N-dimethylacetamide (DMAc) employing conventional two step method via poly(amic acid) intermediate followed by thermal imidization. Reference poly(amideimide)s were synthesized by polycondensation of N,N′-(1,3-phenylene)bis(4-aminobenzamide) and N,N′-(1,3-phenylene)bis(3-aminobenzamide) with the same aromatic dianhydrides. Inherent viscosities of poly(amideimide)s containing pendent pentadecyl chains were in the range 0.37-1.23 dL/g in N,N-dimethylacetamide at 30 ± 0.1 °C indicating the formation of medium to high molecular weight polymers. The poly(amideimide)s containing pendent pentadecyl chains were found to be soluble in N,N-dimethylacetamide, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and pyridine and could be cast into transparent, flexible and tough films from their N,N-dimethylacetamide solution. Wide angle X-ray diffraction patterns exhibited broad halo indicating that the polymers were essentially amorphous in nature. X-ray diffractograms also displayed sharp reflection in the small angle region (2θ ≈ 3°) for poly(amideimide)s containing pentadecyl chains indicating the formation of layered structure arising from packing of flexible pentadecyl chains. The glass transition temperatures observed for reference poly(amideimide)s were in the range 331-275 °C and those for poly(amideimide)s containing pendent pentadecyl chains were in the range 185-286 °C indicating a large drop in Tg owing to the “internal plasticization” effect of pentadecyl chains. The temperature at 10% weight loss (T10), determined by TGA in nitrogen atmosphere, were in the range 460-480 °C indicating their good thermal stability.  相似文献   

17.
Two series of new polyamides containing flexible ether linkages and laterally attached side rods (3a-i and 4a-i) were synthesized from 2,5-bis(4-aminophenoxy)-[1,1;4,1]terphenyl (1a) and 2,5-bis(4-amino-2-trifluoromethylphenoxy)-[1,1;4,1]terphenyl (1b), respectively, with various aromatic dicarboxylic acids by the direct phosphorylation polycondensation. The polymers were produced with high yields and moderate to high inherent viscosities (0.41-0.97 dl/g) that corresponded to weight-average molecular weights (by size exclusion chromatography) of 47,000-65,000. Except for some polyamides that derived from rigid diacids, the obtained polyamides were readily soluble in aprotic polar solvents, such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc), and could afford flexible and tough films via solvent casting. The polymer films cast from DMAc solutions possessed tensile strengths of 85-106 MPa and initial moduli of 1.82-2.96 GPa. These polyamides showed glass-transition temperatures (Tg) in the range of 206-263 °C (by DSC) and softening temperatures (Ts) in the range of 211-253 °C (by TMA). Decomposition temperatures (Td) for 10% weight loss all occurred above 400 °C (by TGA) in both nitrogen and air atmospheres. The polyamides 4a-i derived from trifluoromethyl-substituted diamine 1b generally showed a higher solubility, Tg and Ts but lower thermal stability as compared to the analogous polyamides 3a-i based on diamine 1a.  相似文献   

18.
The diamine 1,4-bis(4-aminophenoxy)-2,5-di-tert-butylbenzene, containing symmetric, bulky di-tert-butyl substituents and a flexible ether unit, was synthesized and used to prepare a series of polyamides by the direct polycondensation with various aromatic dicarboxylic acids in N-methyl-2-pyrrolidinone (NMP) using triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.32–1.27 dL g−1. Most of these polyamides, except II a , II d , and II e , showed an amorphous nature and dissolved in polar solvents and less polar solvents. Polyamides derived from 4,4′-sulfonyldibenzoic acid, 4,4′-(hexafluoro-isopropylidene)dibenzoic acid, and 5-nitroisophthalic acid were even soluble in a common organic solvent such as THF. Most polyamide films could be obtained by casting from their N,N-dimethylacetamide (DMAc) solutions. The polyamide films had a tensile strength range of 49–78 MPa, an elongation range at break of 3–5%, and a tensile modulus range of 1.57–2.01 GPa. These polyamides had glass transition temperatures ranging between 253 and 276°C, and 10% mass loss temperatures were recorded in the range 402–466°C in nitrogen atmosphere. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1069–1074, 1998  相似文献   

19.
A series of novel polyamide-imides (PAIs) with high glass transition temperature were prepared from diimide-dicarboxylic acid, 2,2′-bis(trifluoromethyl)-4,4′-bis(trimellitimidophenyl)biphenyl (BTFTB), by direct polycondensation with various diamines in N-methyl-2-pyrrolidinone using triphenyl phosphite and pyridine as condensing agents in the presence of dehydrating agent (CaCl2). The yield of the polymers was obtained was high with moderate to high inherent viscosities (0.80-1.03 dL g−1). Gel permeation chromatography (GPC) of the polymers showed number-average and weight-average molecular weights up to 8.6 × 104 and 22 × 104, respectively. The PAIs were amorphous in nature. Most of the polymers exhibited good solubility in various solvents such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), pyridine, cyclohexanone and tetrahydrofuran. The polymer films had tensile strength in the range of 79-103 MPa, an elongation at break in the range of 6-16%, and a tensile modulus in the range between 2.1 and 2.8 GPa. The glass transition temperatures of the polymers were determined by DMA method and they were in the range of 264-291 °C. The coefficients of thermal expansion (CTE) of PAIs were determined by TMA instrument and they were between 29 and 67 ppm °C−1. These polymers were fairly thermally stable up to or above 438 °C, and lose 10% weight in the range of 446-505 °C and 438-496 °C, respectively, in nitrogen and air. These polymers had exhibited 80% transmission wavelengths which were in the range of 484-516 nm and their cutoff wavelengths were in between 418 and 434 nm. The PAIs with trifluoromethyl group have higher bulk density resulting in higher free volume and then lowering the dielectric constant.  相似文献   

20.
A new-type of sulfide containing diacid (1,1′-thiobis(2-naphthoxy acetic acid)) was synthesized from 2-naphthol in three steps. Reaction of 2-naphthol with sulfur dichloride afforded 1,1′-thiobis(2-naphthol) (TBN). 1,1′-Thiobis(2-naphthoxy acetic ester) (TBNAE) was successfully synthesized by refluxing the TBN with methylcholoroacetate in the presence of potassium carbonate. The related diacid was synthesized by basic solution reduction of TBNAE. The obtained diacid was fully characterized and used to prepare novel thermally stable poly(sulfide ether amide)s via polyphosphorylation reaction with different aromatic diamines. The properties of these new polyamides were investigated and compared with similar polyamides. These polyamides showed inherent viscosities in the range of 0.39-0.87 dL g−1 in N,N-dimethylacetamide (DMAc) at 30 °C and at a concentration of 0.5 g dL−1. All the polyamides were readily soluble in a variety of polar solvents such as DMAc and tetrahydrofuran (THF). These polyamides showed glass transition temperature (Tg) between 241-268 °C. Thermogravimetric analysis measurement revealed the decomposition temperature at 10% weight loss (T10) ranging from 441- 479 °C in argon atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号