首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Devsharan Verma 《Talanta》2009,78(1):270-65
The present paper deals with a new micro-extraction procedure for selective separation of Cr(VI) in the form of a metaloxy anionic species namely dichromate (Cr2O72−) with N1-hydroxy-N1,N2-diphenylbenzamidine (HOA) in to dichloromethane and its subsequent and rapid diffuse reflectance Fourier transform infrared spectroscopic (DRS-FTIR) determination employing potassium bromide matrix. The diffuse reflectance Fourier transform infrared spectroscopy gives both qualitative and quantitative information about the dichromate. The determination of chromium is based on the analytical peak selection, among the various vibrational peaks, at 902 cm−1. The micro-extraction was based on the liquid-liquid solvent extraction (LLSE) principle. The dichromate binds with the nitrogen and oxygen atoms of N1-hydroxy-N1,N2-diphenylbenzamidine (HOA) and forms 1:2, Cr(VI):HOA complex in 0.1 mol L−1 HCl medium. The formation of above complex, in the acidic medium, is confirmed by the appearance of chocolate-brown color in the micro-extract. The speciation studies of Cr(III) and Cr(VI) is done by conversion of Cr(III) into Cr(VI) utilizing H2O2 as an oxidizing agent. The chemistry of pure dichromate and that of its HOA complex is discussed. The limit of detection (LoD) and the limit of quantification (LoQ) of the method are found to be 0.01 μg g−1 Cr2O72− and 0.05 μg g−1 Cr2O72−, respectively. The standard deviation value and the relative standard value at a level of 10 μg Cr2O72−/0.1 g KBr for = 10 is found to be 0.26 μg Cr2O72− and 2.6%, respectively. The relative standard deviation (n = 8 and 6) for the determination of dichromate (Cr2O72−) in real human biological fluid samples is observed to be in the range 3.1-7.8%.  相似文献   

2.
Manuela L. Kim 《Talanta》2009,77(3):1068-93
An hybrid mesoporous material synthesised in our laboratories for solid phase extraction (SPE) in flow through systems has been used for analytical purposes. The solid was obtained from mesoporous silica MCM-41 functionalized with 3-aminopropyltriethoxy silane by Sol-Gel methodology. In order to exploit the large sorption capacity of the material together with the possibility of modeling it for anions retention, a microcolumn (MC) filled with the solid was inserted in a flow system for preconcentration of Cr(VI) and its determination at ultratrace levels in natural waters. The analytical methodology involved a reverse flow injection system (rFI) holding a MC filled with the solid for the analyte extraction. Elution and colorimetric detection were carried out with 1-5 diphenylcarbazide (DPC) in sulfuric acid. DPC produced the reduction of Cr(VI) to Cr(III) together with the generation of a cationic red complex between Cr(III) and 1-5 diphenylcarbazone which was easily eluted and detected with a visible spectrophotometer. Moreover, the filling material got ready for the next sample loading remaining unspoiled for more than 300 cycles.The effect of several variables on the analytical signal as well as the influence of cationic and anionic interferences were discussed. Particular attention was given to sulfuric acid interference since it is the required media for the complex generation.Under optimal conditions, 99.8% of Cr(VI) recovery was obtained for a preconcentration time of 120 s (sample and DPC flow rates = 1 mL min−1) and an elution volume of 250 μL. The limit of detection (3 s) was found to be 0.09 μg L−1 Cr(VI) with a relative standard deviation (n = 10, 3 μg L−1) of 1.8.Since no Cr(III) was retained by the solid material and Cr(VI) was completely adsorbed, electrothermal atomic absorption spectrometry (ET AAS) determinations of Cr(III) were also performed by simply measuring its concentration at the end of the microcolumn after Cr(VI) retention by the mesoporous solid.Applications to the determination of Cr(VI) and Cr(III) in natural waters and the validation of the methodology were also studied.  相似文献   

3.
A lab-made hybrid mesoporous solid was employed in a flow injection solid phase extraction electrothermal atomic absorption spectrometric (FI–SPE–ETAAS) system for the selective retention of Cr(VI). The solid was prepared by co-condensation of sodium tetraethylortosilicate and 3-aminopropyltriethoxysilane by sol–gel methodology and one-pot synthesis and characterized by Fourier transform infrared spectroscopy, X ray diffraction spectroscopy, and scanning electronic microscopy. Adsorption capacities at different pH values of both, Cr(VI) and Cr(III), were also measured in order to obtain the optimum retention for Cr(VI) with no interference of Cr(III). The maximum capacity of adsorption (4.35 mmol g 1) was observed for pH values between 2–3, whilst Cr(III) was found to remain in solution (adsorption capacity = 0.007 mmol g 1). Then, a microcolumn (bed volume: 7.9 µL) was filled with the solid and inserted in the FI–ETAAS system for analytical purposes. Since the analyte was strongly retained by the filling in the anionic form, 0.1 mol L 1 hydroxylammonium chloride in 1 mol L 1 hydrochloric acid was selected as eluent due to its redox characteristics. In this way, the sorbed Cr(VI) was easily released in the cationic form. The enrichment factor (EF) was found as a compromise between sensitivity and sample throughput and a value of 27 was obtained under optimized conditions: pH 2, sample loading 2 mL min 1 (60 s), elution flow rate 0.5 ml min 1 (eluent volume: 75 μL).  相似文献   

4.
A study was undertaken to evaluate Saccharomyces cerevisiae as a substrate for the biosorption of Cr(III) and Cr(VI) aiming to the selective determination of these species in aqueous solutions. The yeast cells were covalently immobilised on controlled pore glass (CPG), packed in a minicolumn and incorporated in an on-line flow injection system. The effect of chemical and physical variables affecting the biosorption process was tested in order to select the optimal analytical conditions for the Cr retention by S. cerevisiae. Cr(III) was retained by the immobilised cells and Cr(VI) were retained by CPG. The speciation was possible by selective and sequential elution of Cr(III) with 0.05 mol L−1 HCl and 2.0 mol L−1 HNO3 for Cr(VI). The influence of some concomitant ions up to 20 mg L−1 was also tested. Quantitative determinations of Cr were carried out by means of inductively coupled plasma optical emission spectrometry (ICP OES). Preconcentration factors of 12 were achieved for Cr(III) and 5 for Cr(VI) when 1.7 mL of sample were processed reaching detection limits of 0.45 for Cr(III) and 1.5 μg L−1 for Cr(VI). The speciation of inorganic Cr in different kinds of natural waters was performed following the proposed method. Spiked water samples were also analysed and the recoveries were in all cases between 81 and 103%.  相似文献   

5.
Themelis DG  Kika FS  Economou A 《Talanta》2006,69(3):615-620
A new rapid and sensitive FI assay is reported for the simultaneous direct spectrophotometric determination of trace Cr(VI) and Cr(III) in real samples. The method is based upon the reaction of Cr(VI) with chromotropic acid (CA) in highly acidic medium to form a water-soluble complex (λmax = 370 nm). Cr(III) reacts with CA only after its on-line oxidation to Cr(VI) by alkaline KIO4. The determination of each chromium species in the sample was achieved by absorbance differences. The calibration curves were linear over the range 3-4000 μg l−1 and 30-1200 μg l−1 for Cr(VI) and Cr(III), respectively, while the precision close to the quantitation limit was satisfactory in both cases (sr = 3.0% for Cr(VI) and 4.0% for Cr(III) (n = 10) at 10 and 50 μg l−1 level, respectively). The method developed proved to be adequately selective and sensitive (cL = 1 and 10 μg l−1 for Cr(VI) and Cr(III), respectively). The application of the method to the analysis of water samples (tap and mineral water) gave accurate results based on recovery studies (93-106%). Analytical results of real sample analysis were in good agreement with certified values.  相似文献   

6.
A modified SBA-15 mesoporous silica material NH2-SBA-15 was synthesized successfully by grafting γ-aminopropyl-triethoxysilane. The material was characterized using transmission electron microscopy (TEM) and Fourier transform infrared/Raman (FT-IR/Raman) spectroscopy, and used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Effective sorption of Cr (VI) was achieved at pH 2.0 with no interference from Cr (III) and other ions and 0.5 mol L−1 NH3·H2O solution was found optimal for the complete elution of Cr (VI). An enrichment factor of 44 and was achieved under optimized experimental conditions at a sample loading of 2.0 mL min−1 sample loading (300 s) and an elution flow rate of 2.0 mL min−1 (24 s). The precision of the 11 replicate Cr (VI) measurements was 2.1% at the 100 μg L−1 level with a detection limit of 0.2 μg L−1 (3 s, n = 10) using the FAAS. The developed method was successfully applied to trace chromium determination in waste water. The accuracy was validated using a certified reference material of riverine water (GBW08607).  相似文献   

7.
A new time-based flow injection on-line solid phase extraction method for chromium(VI) and lead determination using flame atomic absorption spectrometry was developed. The use of hydrophobic poly-chlorotrifluoroethylene (PCTFE)-beads as absorbent in on-line preconcentration system was evaluated. Effective formation of ammonium pyrrolidine dithiocarbamate complexes and subsequently retention in PCTFE packed column, was achieved in pH range 1.0-1.6 and 1.5-3.2 for Cr(VI) and Pb(II) ions, respectively. The sorbed analyte was efficiently eluted with isobutyl-methyl-ketone for on-line FAAS determination. The proposed packing material exhibited excellent chemical and mechanical resistance, fast kinetics for adsorption of Cr(VI) and Pb(II) permitting the use of high sample flow rates at least up to 15 mL min−1 without loss of retention efficiency. For a preconcentration time of 90 s, the sample frequency was 30 h−1, the enhancement factor was 94 and 220, the detection limit was 0.4 and 1.2 μg L−1, while the precision (R.S.D.) was 1.8% (at 5 μg L−1) and 2.1% (at 30 μg L−1) for chromium(VI) and lead, respectively. The applicability and the accuracy of the developed method were estimated by the analysis spiked water samples and certified reference material NIST-CRM 1643d (Trace elements in water) and NIST-SRM 2109 (chromium(VI) speciation in water).  相似文献   

8.
A simple and sensitive multicommutated flow procedure, implemented by employing a homemade light emitting diode (LED) based photometer, has been developed for the determination of chromium (VI) and total chromium in water. The flow system comprised a set of four solenoid micro-pumps, which were assembled to work as fluid propelling and as commutating devices. The core of the detection unit comprised a green LED source, a photodiode and a homemade flow cell of 100 mm length and 2 mm inner diameter. The photometric procedure for the speciation of chromium in natural waters was based on the reaction of Cr (VI) with 1,5-diphenylcarbazide. Cr (III) was previously oxidized to Cr (VI) and determined as the difference between total Cr and Cr (VI). After carrying out the assays to select the best operational conditions the features of the method included: a linear response ranging from 10 to 200 μg l−1 Cr (III) and Cr (VI) (r = 0.999, n = 7); limits of detection of 2.05 and 1.0 μg l−1 for Cr (III) and Cr (VI), respectively; a relative standard deviation lower than 2.0% (n = 20) for a typical solution containing 50 μg l−1 Cr; a sampling throughput of 67 and 105 determinations per hour for total Cr and Cr (VI), respectively, and recovery values within the range of 93-108% for spiked concentrations of the order of 50 μg l−1.  相似文献   

9.
The concentrations of chromium (III) and (VI) in fly ash from nine Australian coal fired power stations were determined. Cr(VI) was completely leached by extraction with 0.01 M NaOH solution and the concentration was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). This was confirmed by determining Cr(III) and Cr(VI) in the extracts of fly ash that had been spiked with chromium salts. These analytical measurements were done using a combination of ion-exchange chromatography and ICP-AES. The elutant was 0.05 M HNO3 containing 0.5%-CH3OH. When the column was operated at a flow rate of 1.2 ml min−1 and samples were injected by use of a sample loop with a volume of 100 μl, Cr(III) and Cr(VI) in sample solution was exclusively separated within approximately 10 min. The detection limits (3σ) were 5 ng for Cr(III) (0.050 mg l−1) and 9 ng for Cr(VI) (0.090 mg l−1), respectively. A relative standard deviation of 1.9% (n = 6) was obtained for the determination by IC-ICP-AES of 0.25 mg l−1 Cr(III) and Cr(VI).  相似文献   

10.
A flow injection (FI) on-line sorption preconcentration procedure utilizing a packed column reactor and combined with electrothermal atomic absorption spectrometry (ETAAS) is proposed for the determination of low levels of Cr(VI) in water samples. Polytetrafluoroethylene (PTFE) beads packed in a mini-column is used as sorbent material. The complex formed between Cr(VI) and ammonium pyrrolidine dithiocarbamate (APDC) is sorbed on the PTFE beads, and is subsequently eluted by an air-monosegmented discrete zone of absolute ethanol (35 μl), the analyte being quantified by ETAAS.The preconcentration procedure using the proposed column significantly enhances the preconcentration efficiency as compared with the preconcentration approach incorporating an open tubular PTFE knotted reactor (KR). Comparing the two procedure for equal surface sorption area, the advantages of using a packed column are observed in terms of limit of detection, enrichment factor and retention efficiency. With a preconcentration time of 60 s, and a sample flow rate of 5.0 ml l−1, the enrichment factor (30.1) and the retention efficiency (24.1%) were doubled, yielding a detection limit (3σ) as low as 8.8 ng l−1. The sample frequency was 16.7 h−1. The concentration efficiency was 8.38 and the precision was 1.05% at 0.5 μg l−1 of Cr(VI). The proposed column has been applied successfully to the analysis of natural water and synthetic seawater. Its performance was verified by the analysis of two certified Cr(VI)-reference materials and by recovery measurements on spiked samples.  相似文献   

11.
A novel method for selective determination of Cr(III) and Cr(VI) in environmental water samples was developed based on target-induced fluorescence quenching of glutathione-stabilized gold nanoclusters (GSH-Au NCs). Fluorescent GSH-Au NCs were synthesized by a one-step approach employing GSH as reducing/protecting reagent. It was found that Cr(III) and Cr(VI) showed pH-dependent fluorescence quenching capabilities for GSH-Au NCs, and thus selective determination of Cr(III) and Cr(VI) could be achieved at different pHs. Addition of EDTA was able to effectively eliminate the interferences from other metal ions, leading to a good selectivity for this method. Under optimized conditions, Cr(III) showed a linear range of 25–3800 μg L−1 and a limit of detection (LOD) of 2.5 μg L−1. The Cr(VI) ion demonstrated a linear range of 5–500 μg L−1 and LOD of 0.5 μg L−1. The run-to-run relative standard deviations (n = 5) for Cr(III) and Cr(VI) were 3.9% and 2.8%, respectively. The recoveries of Cr(III) and Cr(VI) in environmental water samples were also satisfactory (76.3–116%). This method, with its simplicity, low cost, high selectivity and sensitivity, could be used as a promising tool for chromium analysis in environmental water samples.  相似文献   

12.
A novel on-line preconcentration and determination system based on a fiber-packed column was developed for speciation analysis of Cr in drinking water samples prior to its determination by flame atomic absorption spectrometry (FAAS). All variables involved in the development of the preconcentration method including, pH, eluent type, sample and eluent flow rates, interfering effects, etc., were studied in order to achieve the best analytical performance. A preconcentration factor of 32 was obtained for Cr(VI) and Cr(III). The levels of Cr(III) species were calculated by difference of total Cr and Cr(VI) levels. Total Cr was determined after oxidation of Cr(III) to Cr(VI) with hydrogen peroxide. The calibration graph was linear with a correlation coefficient of 0.999 at levels near the detection limit and up to at least 50 μg L−1. The relative standard deviation (R.S.D.) was 4.3% (C = 5 μg L−1 Cr(VI), n = 10, sample volume = 25 mL). The limit of detection (LOD) for both Cr(III) and Cr(VI) species was 0.3 μg L−1. Verification of the accuracy was carried out by the analysis of a standard reference material (NIST SRM 1643e “Trace elements in natural water”). The method was successfully applied to the determination of Cr(III) and Cr(VI) species in drinking water samples.  相似文献   

13.
Hexavalent chromium, Cr(VI), in the form of chromate (CrO4 2?) or dichromate (Cr2O7 2?) is a well-described carcinogen found in the drinking water in many parts of the country at levels deemed unsafe by the U.S. Environmental Protection Agency and the World Health Organization. We report on the ability of bidentate organic molecules containing diols or diamines to capture chromate ions from aqueous sources by forming cyclic organic-Cr(VI) carbonates or ureas. After their formation, the cyclic organic-Cr(VI) molecules are readily absorbed onto granulated activated charcoal to facilitate Cr(VI) removal. Using density functional theory, E 0 values for the reactions of diols and diamines with chromate were calculated and correlated with the experimental findings of Cr(VI) removal.  相似文献   

14.
Xiang Y  Mei L  Li N  Tong A 《Analytica chimica acta》2007,581(1):132-136
A new fluorogenic method for the selective and sensitive determination of chromium(VI) in acidic water using rhodamine B hydrazide was developed. This method was based on the oxidation of non-fluorescent rhodamine B hydrazide by potassium dichromate in acidic aqueous conditions to give rhodamine B, which was highly fluorescent, as a product. With the optimum condition described, the fluorescence enhancement at 585 nm was linearly related to the concentration of chromium(VI) in the range of 5.0 × 10−8 to 2.0 × 10−6 mol L−1 (2.60-104 ng mL−1) with a correlation coefficient of R2 = 0.9993 (n = 18) and a detection limit of 5.5 × 10−9 mol L−1 (0.29 ng mL−1). The R.S.D. was 2.2% (n = 5). The proposed method was also applied to the determination of chromium(VI) in drinking water, river water and synthetic samples.  相似文献   

15.
A novel in-capillary reduction and capillary electrophoretic (CE)-chemiluminescence (CL) method was developed for the sensitive and selective determination of chromium(III) and chromium(VI). The proposed method was based on the in-capillary reduction of Cr(VI) with acidic H2O2 to form Cr(III) using the zone-passing technique and chemiluminescence detection of Cr(III). The sample [Cr3+ and CrO42−], hydrochloric acid, and H2O2 (reductant) solution segments were injected for specified periods of time in this order from the anodic end of a capillary, followed by application of an appropriate running voltage between both ends. As both chromium species have opposite charges, Cr3+ migrates to the cathode while CrO42− ion, moving oppositely to the anode, reacts with acidic H2O2, resulted in formation of Cr3+. Based on the migration time difference of both Cr3+ ions, they were separated by zone electrophoresis. Running buffer was composed of 0.02 mol l−1 HAc-NaAc (pH 4.7) with 1×10−3 mol l−1 EDTA. Parameters affecting CE-CL separation and detection, such as reductant concentration, mixing mode of the analytes with CL reagent, CL reaction reagent pH and concentration, stability of luminol-hydrogen peroxide mixed solution were optimized. The limits of detection for chromium(III) and chromium(VI) (3σ) were 6×10−13 mol l−1 (mass concentration 12 zmol) and 8×10−12 mol l−1 (160 zmol), respectively. This method offered potential advantages of simplicity, sensitivity, selectivity and applicability to the determination of Cr(III) and Cr(VI) in environmental water.  相似文献   

16.
B.D. Real  L.A. Sarabia 《Talanta》2007,71(4):1599-1609
Using a central composite design, the signal of the process for the spectrophotometric determination of hexavalent chromium (λ = 543 nm) is maximised and its variability minimised using as complexing agent 1,5-diphenylcarbazide in sufficiently acid medium. To analyse the interference of various analytes (Mo(VI), V(V), Fe(III) and Mn(VII)) on the Cr(VI) as a function of concentration of interferent, a factorial design was prepared at three levels of each (zero, medium and high concentration), which implies performing 81 determinations. However, a D-optimal design with just nine experiments is sufficiently good to estimate the model proposed.The interference of these metals makes it impossible to determine Cr(VI) when they are present in the sample. To avoid prior separation steps, a multivariate regression by partial least squares, PLS, is proposed to calibrate the Cr(VI) in the presence of these analytes varying the concentration of the Cr(VI) between 0.1 and 0.9 μg ml−1 and that of the interferents between 3 and 5 μg ml−1. The average errors obtained were 4.5% and 3.29% fitted and in prediction, respectively, with a standard error in prediction (RMSEP) of 0.016% presenting absence of both constant and proportional bias.The detection limit with the PLS regression in the presence of interferents is 0.1 μg ml−1 with a probability of false positive equal to 5% and less than 5% for false negative. The capability of detection is similar to that obtained with the univariate calibration (absorbance at 543 nm) in absence of interferents.With the PLS regression it is possible to discriminate 0.085 μg ml−1 of Cr(VI) in a sample with 0.5 μg ml−1 of Cr(VI) with probabilities of false compliance and false non-compliance equal to 0.05. For the univariate calibration without interferents, it was established at 0.0971 μg ml−1 of Cr(VI) for the same nominal concentration.In relation to interference of V(V), Fe(III) and Mn(VII), the PLS calibration could be an efficient alternative to the separation step for Cr(VI) spectrophotometric determination using 1,5-diphenylcarbazide.  相似文献   

17.
A highly sensitive, selective and simple kinetic method was developed for the determination of dissolved chromium species based on the catalytic effect of Cr(III) and/or Cr(VI) on the oxidation of 2-amino-5-methylphenol (AMP) with H2O2. The fixed time and initial rate variants were used for kinetic spectrophotometric measurements by tracing the oxidized product at 400 nm for 10 min after starting the reaction. Boric acid and Tween-40 exerted pronounced activating and micellar sensitizing effects on the studied redox reaction, respectively. The optimum reaction conditions were: 3.0 mmol l−1 AMP, 0.45 mol l−1 H2O2, 0.50 mol l−1 boric acid, 4 v/v% Tween-40, 10 mmol l−1 phosphate buffer and pH 6.45 ± 0.02 at 35 °C. Both Cr(III) and Cr(VI) ions exerted the same catalytic effect on the studied reaction. Linear calibration graphs were obtained for the determination of up to 6.0 ng ml−1 Cr with detection limits of 0.054 and 0.10 ng ml−1 Cr; following the fixed time and initial rate methods, respectively. The proposed method was successfully applied to the speciation and determination of trace levels of dissolved Cr(III) and Cr(VI) in natural and effluents of industrial waste water. The total dissolved Cr(III) and Cr(VI) species was determined first. In a second run, Cr(VI) was determined alone after precipitation of Cr(III) ions in presence of Al(OH)3 collector, where Cr(III) is then determined by difference. Moreover, published catalytic-spectrophotometric methods for chromium determination were reviewed.  相似文献   

18.
Ma HL  Tanner PA 《Talanta》2008,77(1):189-194
An isotope dilution method has been developed for the speciation analysis of chromium in natural waters which accounts for species interconversions without the requirement of a separation instrument connected to the mass spectrometer. The method involves (i) in-situ spiking of the sample with isotopically enriched chromium species; (ii) separation of chromium species by precipitation with iron hydroxide; (iii) careful measurement of isotope ratios using an inductively coupled plasma mass spectrometer (ICP-MS) with a dynamic reaction cell (DRC) to remove isobaric polyatomic interferences. The method detection limits are 0.4 μg L−1 for Cr(III) and 0.04 μg L−1 for Cr(VI). The method is demonstrated for the speciation of Cr(III) and Cr(VI) in local nullah and synthetically spiked water samples. The percentage of conversion from Cr(III) to Cr(VI) increased from 5.9% to 9.3% with increase of the concentration of Cr(VI) and Cr(III) from 1 to 100 μg L−1, while the reverse conversion from Cr(VI) to Cr(III) was observed within a range between 0.9% and 1.9%. The equilibrium constant for the conversion was found to be independent of the initial concentrations of Cr(III) and Cr(VI) and in the range of 1.0 (at pH 3) to 1.8 (at pH 10). The precision of the method is better than that of the DPC method for Cr(VI) analysis, with the added bonuses of freedom from interferences and simultaneous Cr(III) determination.  相似文献   

19.
This study proposes the dual electromembrane extraction followed by high performance liquid chromatography for selective separation-preconcentration of Cr(VI) and Cr(III) in different environmental samples. The method was based on the electrokinetic migration of chromium species toward the electrodes with opposite charge into the two different hollow fibers. The extractant was then complexed with ammonium pyrrolidinedithiocarbamate for HPLC analysis. The effects of analytical parameters including pH, type of organic solvent, sample volume, stirring rate, time of extraction and applied voltage were investigated. The results showed that Cr(III) and Cr(VI) could be simultaneously extracted into the two different hollow fibers. Under optimized conditions, the analytes were quantified by HPLC instrument, with acceptable linearity ranging from 20 to 500 μg L−1 (R2 values ≥ 0.9979), and repeatability (RSD) ranging between 9.8% and 13.7% (n = 5). Also, preconcentration factors of 21.8–33 that corresponded to recoveries ranging from 31.1% to 47.2% were achieved for Cr(III) and Cr(VI), respectively. The estimated detection limits (S/N ratio of 3:1) were less than 5.4 μg L−1. Finally, the proposed method was successfully applied to determine Cr(III) and Cr(VI) species in some real water samples.  相似文献   

20.
Chromium may exist in environmental waters as Cr(III) and Cr(IV), the latter being the toxic and carcinogenic form. Since atomic absorption spectrometry (AAS) and inductively coupled plasma atomic emission spectrometry can only yield information on total Cr concentration, a polymer resin bearing O,O-donor chelating groups such as the maleic acid-functionalized XAD(CO)CHCHCOOH resin was synthesized to selectively retain Cr(III) at pH 4.0-5.5. The dynamic breakthrough capacity of the resin for Cr(III) at pH 5.0 was 7.52 mg g−1, and the preconcentration factor extended to 250-300. Chromium(III) in the presence of 250-fold Cr(VI)—which was not retained—could be effectively preconcentrated on the NH4+-form of the resin and determined by AAS or diphenylcarbazide (DPC) spectrophotometry. When Cr(VI) was reduced to Cr(III) with Na2SO3 solution brought to pH 1 by the addition of 1 M H2SO4, and preconcentrated on the resin, total Cr could be determined. The developed method was validated with a blended coal sample CRM-1632. Since the adsorption behavior as a function of pH of possible interferent metal ions, e.g. Ni(II), Co(II), Cu(II), Cd(II), Zn(II), Pb(II) and Fe(III), was similar to that of Cr(III), selective elution of Cr(III) from the resin was realized using a mixture of 1 wt.% H2O2+1 M NH3. The eluate containing Cr as chromate could be directly analyzed by diphenyl carbazide spectrophotometry without any adverse effect from the common interferents of this method, i.e. Fe(III), Cu(II) Hg(II), VO3, MoO42− and WO42−. Various synthetic waste solutions typical of electroplating bath effluents containing Cr, Cu, Ni, Zn, Na, Ca, cyanide (and chemical oxidation demand (COD), achieved by glucose addition) were subjected to pretreatment procedures such as hypochlorite oxidation (of cyanide) and catalytic oxidation (of COD) with peroxodisulfate. Chromium determination gave satisfactory results. The combined column preconcentration—selective elution—diphenylcarbazide spectrophotometric determination was also successfully applied to the determination of Cr in artificial and real seawater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号