首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanocomposites of organomodified montmorillonites and the biodegradable polyester derived from hexanediol and succinic acid were prepared by the solution‐casting method using chloroform as solvent. Samples were studied by means of X‐ray diffraction and transmission electron microscopy. Intercalated structures differentiated by the stacking mode between silicate layers were observed. The highest variability in interlayer spacing was found when C30B organoclay was added. In this case, hydroxyl groups of the modifier could interact with polar carbonyl groups of the polyester. Thermal stability and crystallization behavior under both isothermal and nonisothermal conditions were evaluated. The overall crystallization rate of the intercalated nanocomposites was higher than that of the neat polyester due to a significant increase in their nucleation density, which compensated for their lower crystal growth rate. Isoconversional analysis was used to determine effective activation energies and to estimate nucleation and transport energy parameters from nonisothermal hot crystallization experiments. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2234–2248, 2008  相似文献   

2.
Isothermal and nonisothermal crystallization kinetics of polyester 64 have been investigated by means of differential scanning calorimetry and optical microscopy. The Avrami analysis has been performed to obtain the kinetic parameters of primary crystallization. These indicate a three-dimensional spherulitic growth on heterogeneous nuclei for the isothermal crystallization, whereas an sporadic nucleation becomes dominant in the nonisothermal crystallization. The maximum crystallization rate of polyester 64 was deduced to take place at a temperature close to −3 °C. Polarizing light microscopy showed that spherulites with a negative birefringence are formed during isothermal crystallization, whereas transmission electron microscopy indicates that the b crystallographic axis is aligned parallel to the spherulitic radius.  相似文献   

3.
Syndiotactic 1,2-polybutadiene/organoclay nanocomposites were prepared and characterized by thermogravimetry analysis (TGA), X-ray diffraction (XRD), polarized optical microscopy (POM), and differential scanning calorimetry (DSC), respectively. The XRD shows that exfoliated nanocomposites are formed dominantly at lower clay concentrations (less than 2%), at higher clay contents intercalated nanocomposites dominate. At the same time, the XRD indicates that the crystal structures of sPB formed in the sPB/organoclay nanocomposites do not vary, only the relative intensity of the peaks corresponding to (0 1 0) and (2 0 0)/(1 1 0) crystal planes, respectively, varies. The DSC and POM indicate that organoclay layers can improve cooling crystallization temperature, crystallization rate and reducing the spherulite sizes of sPB. TGA shows that under argon flow the nanocomposites exhibit slight decrease of thermal stability, while under oxygen flow the resistance of oxidation and thermal stability of sPB/organoclay nanocomposites were significantly improved relative to pristine sPB. The primary and secondary crystallization for pristine sPB and sPB/organoclay (2%) nanocomposites were analyzed and compared based on different approaches. The nanocomposites exhibit smaller Avrami exponent and larger crystallization rate constant, with respect to pristine sPB. Primary crystallization under isothermal conditions displays both athermal nucleation and three-dimensional spherulite growth and under nonisothermal processes the mechanism of primary crystallization becomes very complex. Secondary crystallization shows a lower-dimensional crystal growth geometry for both isothermal and nonisothermal conditions. The activation energy of crystallization of sPB and sPB/organoclay nanocomposites under isothermal and nonisothermal conditions were also calculated based on different approaches.  相似文献   

4.
The influence of two concentrations of clay nanoparticles on the nonisothermal crystallization behavior of the intercalated polypropylene-clay nanocomposites is investigated here. It is observed that the crystallization peak temperature (Tp) of PP-clay nanocomposites is marginally higher than neat PP at various cooling rates. Furthermore, the half-time for crystallization (t0.5) decreased with increase in clay content, implying the nucleating role of clay nanoparticles. The nonisothermal crystallization data is analyzed using Avrami, Ozawa and Mo and coworkers methods. The validity of kinetic models on the nonisothermal crystallization process of PP-clay nanocomposites is discussed. The approach developed by Mo and coworkers successfully describes the nonisothermal crystallization behavior of PP and PP-clay nanocomposites. The activation energy for nonisothermal crystallization of pure PP and PP-clay nanocomposites based on Kissinger method is evaluated.  相似文献   

5.
The crystallization behavior of a new sequential polyester constituted by glycolic acid and 4‐hydroxybutyric acid has been studied under nonisothermal conditions. Nonisothermal melt crystallization has been followed by means of hot‐stage optical microscopy (HSOM), with experiments performed at different cooling rates. Two crystallization regimes have been found, which is in good agreement with previous isothermal studies and with the different spherulitic morphologies that were observed. The kinetics of both glass and melt crystallizations has also been studied by differential scanning calorimetry (DSC) and considering the typical Avrami, Ozawa, and Cazé analyses. Only the last gave Avrami exponents, which were in good agreement with those measured under isothermal conditions, suggesting a spherulitic growth with a predetermined nucleation. Isoconversional data of melt and glass nonisothermal crystallizations have been combined to obtain the Hoffman and Lauritzen parameters. Results again indicate the existence of two crystallization regimes with nucleation constants close to those deduced from isothermal DSC experiments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 121–133, 2008  相似文献   

6.
An exfoliated nanocomposite was prepared by the film‐casting technique from C25A organo‐modified clay and a new biodegradable polyester derived from glycolic acid and 6‐hydroxyhexanonoic acid. This polyester has a sequential monomer distribution and high crystallinity, allowing a detailed study of its isothermal crystallization. The influence of the clay on the crystallization behavior was investigated by optical microscopy, simultaneous SAXS/WAXD synchrotron radiation and FTIR spectroscopy. Primary nucleation and crystal growth rate decreased significantly with the incorporation of nanoparticles. In addition, the overall crystallization rate of the nanocomposite was logically lower than that of the neat polyester. Bulk crystallizations were modeled from FTIR data with the Avrami equation. The results showed spherulite growth geometry and predetermined (heterogeneous) nucleation for both samples. Morphological studies revealed that both the crystal and the amorphous layer thicknesses were influenced by the presence of silicate layers. The overall percentage of crystallinity and the size of crystalline domains decreased with the addition of the highly miscible organoclay. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 33–46, 2010  相似文献   

7.
The nonisothermal cold crystallization behavior of intercalated polylactide (PLA)/clay nanocomposites (PLACNs) was studied using differential scanning calorimetry, polarized optical microscope, X‐ray diffractometer, dynamic mechanical thermal analysis, and Fourier transform infrared spectrometer. The results show that both the cold crystallization temperature (Tcc) and melting point (Tm) of PLA matrix decreases monotonously with increasing of clay loadings, accompanied by the decreasing degree of crystallinity (Xc%) at the low heating rates (≤5 °C/min). However, the Xc% of PLACNs presents a remarkable increase at the high heating rate of 10 °C/min in contrast to that of neat PLA. The crystallization kinetics was then analyzed by the Avrami, Jezioney, Ozawa, Mo, Kissinger and Lauritzen–Hoffman kinetic models. It can be concluded that at the low heating rate, the cold crystallization of both the neat PLA and nanocomposites proceeds by regime III kinetics. The nucleation effect of clay promote the crystallization to some extent, while the impeding effect of clay results in the decrease of crystallization rate with increasing of clay loadings. At the high heating rate of 10 °C/min, crystallization proceeds mainly by regime II kinetics. Thus, the formation of much more incomplete crystals in the PLACNs with high clay loadings due to the dominant multiple nucleations mechanism in regime II, may have primary contribution to the lower crystallization kinetics, also as a result to the higher degree of crystallinity and lower melting point in contrast to that of neat PLA. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1100–1113, 2007  相似文献   

8.
Dynamically cured polypropylene (PP)/epoxy blends compatibilized with maleic anhydride grafted PP were prepared by the curing of an epoxy resin during melt mixing with molten PP. The morphology and crystallization behavior of dynamically cured PP/epoxy blends were studied with scanning electron microscopy, differential scanning calorimetry, and polarized optical microscopy. Dynamically cured PP/epoxy blends, with the structure of epoxy particles finely dispersed in the PP matrix, were obtained, and the average diameter of the particles slightly increased with increasing epoxy resin content. In a study of the nonisothermal crystallization of PP and PP/epoxy blends, crystallization parameter analysis showed that epoxy particles could act as effective nucleating agents, accelerating the crystallization of the PP component in the PP/epoxy blends. The isothermal crystallization kinetics of PP and dynamically cured PP/epoxy blends were described by the Avrami equation. The results showed that the Avrami exponent of PP in the blends was higher than that of PP, and the crystallization rate was faster than that of PP. However, the crystallization rate decreased when the epoxy resin content was greater than 20 wt %. The crystallization thermodynamics of PP and dynamically cured PP/epoxy blends were studied according to the Hoffman theory. The chain folding energy for PP crystallization in dynamically cured PP/epoxy blends decreased with increasing epoxy resin content, and the minimum of the chain folding energy was observed at a 20 wt % epoxy resin content. The size of the PP spherulites in the blends was obviously smaller than that of PP. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1181–1191, 2004  相似文献   

9.
The structure and kinetics of the crystallization reaction of amorphous Te51.3As45.7Cu3 were studied under nonisothermal conditions using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Two exothermic changes were reported. Five isoconversional methods, of Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), Tang, Starink, and Vyazovkin, were used to determine the variation of the activation energy for crystallization with temperature, E(T). The results show that the activation energy for crystallization associated with the first peak first decreases with increasing temperature and then increases. Different behaviour was observed for the second peak, where an increase of E with temperature followed by a decrease. The effect of heating rate on the reaction model, g(), was also different for the two crystallization peaks.  相似文献   

10.
采用示差扫描量热仪(DSC) 研究了具有生物相容性及可降解性P(BHB-CL)超支化共聚酯的非等温熔融结晶过程, 分别采用Avrami 方程、Ozawa 方程和Mo方程对P(BHB-CL)共聚酯的非等温动力学数据进行比较分析, 计算了相关的非等温结晶动力学参数, 并利用Kissinger方程计算其非等温结晶活化能. 结果表明, Mo方程更适合描述P(BHB-CL)共聚酯的非等温结晶过程.  相似文献   

11.
Biodegradable poly(butylene succinate)/carbon black (PBS/CB) nanocomposite was prepared by melt compounding and the amount of CB loading was 3 wt %. The PBS/CB nanocomposite exhibited not only a good dispersion of aggregates of CB in the PBS matrix, but also an improvement in mechanical and electrical properties as well. The nonisothermal crystallization behavior and crystal structure of neat PBS and its nanocomposite were also studied by differential scanning calorimetry and wide angle X-ray diffraction in detail. The crystal morphology is observed by polarized optical microscopy. The Avrami equation and the Mo equation were employed to describe the nonisothermal crystallization kinetics. The Mo equation was found to be more suitable to predict the whole nonisothermal crystallization process for both neat PBS and its nanocomposite. It was concluded that the addition of CB retarded the crystallization rate compared with that of neat PBS at the same cooling rate, which can be attributed to restricting effect of CB on the segmental motions of the polymer chains. Moreover, the incorporation of the CB particles does not modify the crystal structure of PBS.  相似文献   

12.
The effect of nucleating agents on the polymorphic crystallization behavior of poly(butylene adipate) (PBA) was studied with four kinds of commercially available nucleating agents, such as talc and boron nitride. The crystal structures of the α and β forms were studied with wide‐angle X‐ray diffraction. The β‐to‐α‐crystal transformation of PBA in the absence and presence of the nucleating agents in isothermal crystallization and nonisothermal crystallization processes was studied with differential scanning calorimetry and polarized optical microscopy. In both isothermal and nonisothermal crystallization, the introduction of nucleating agents selectively initiated the nucleation of the α‐form crystal, which was relatively slow in the absence of nucleating agents. The nucleating activity of the four kinds of nucleating agents in the crystallization of the PBA α‐form crystal was determined by the study of the nonisothermal crystallization, spherulite morphology, and isothermal kinetics. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2340–2351, 2005  相似文献   

13.
Nonisothermal crystallization kinetics of ternary blends of the metallocence polyethylene (mPE), low-density polyethylene (LDPE) and linear low-density polyethylene (LLDPE) were studied using DSC at various scanning rates. The Ozawa theory and a method developed by Mo were employed to describe the nonisothermal crystallization process of the two selected ternary blends. The results speak that Mo method is successful in describing the nonisothermal crystallization process of mPE/LLDPE/LDPE ternary blends, while Ozawa theory is not accurate to interpret the whole process of nonisothermal crystallization. Each ternary blend in this study shows different crystallization and melting behavior due to its different mPE content. The crystallinity of the ternary blends rises with increasing mPE content, and mPE improve the crystallization of the blends at low temperature. The crystallization activation energy of the five ternary blends that had been calculated from Vyazovkin method was increased with mPE content, indicating that the more mPE in the blends, the easier the nucleus or microcrystallites form at the primary stage of nonisothermal crystallization. LLDPE and mPE may form mixed crystals due to none separated-peaks were observed around the main melting or crystallization peak when the ternary blends were heating or cooling. The fixed small content of LDPE made little influence on the main crystallization behavior of the ternary blends and the crystallization behavior was mainly determined by the content of mPE and LLDPE.  相似文献   

14.
X‐ray diffraction methods and differential scanning calorimetry were used to investigate the crystalline structure and crystallization kinetics of syndiotactic polystyrene (sPS)/clay nanocomposites. X‐ray diffraction data showed the presence of polymorphism in sPS/montmorillonite (MMT) nanocomposites, which was strongly dependent on the processing conditions (premelting temperature and cooling rate) of the sPS/MMT nanocomposites and on the content of MMT in the sPS/MMT nanocomposites. The α‐crystalline form could be transformed into β‐crystalline forms at higher premelting temperatures. The nonisothermal melt‐crystallization kinetics and melting behavior of the sPS/MMT nanocomposites were also studied at various cooling rates. The correlation of the crystallization kinetics, melting behavior, and crystalline structure of the sPS/MMT nanocomposites was examined. The results indicated that the addition of a small amount of MMT to sPS caused a change in the mechanism of nucleation and the crystal growth of the sPS crystallite. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 560–570, 2003  相似文献   

15.
The nonisothermal crystallization kinetics of poly(propylene) (PP) and poly(propylene)/organic‐montmorillonite (PP/Mont) nanocomposite were investigated by differential scanning calorimetry (DSC) with various cooling rates. The Avrami analysis modified by previous research was used to describe the nonisothermal crystallization process of PP and PP/Mont nanocomposite very well. The values of half‐time and Zc showed that the crystallization rate increased with increasing cooling rates for both PP and PP/Mont nanocomposite, but the crystallization rate of PP/Mont nanocomposite was faster than that of PP at a given cooling rate. The activation energies were estimated by the Kissinger method, and the values were 189.4 and 155.7 kJ/mol for PP and PP/Mont nanocomposite, respectively. PP/Mont nanocomposite could be easily fabricated as original PP, although the addition of organomontmorillonite might accelerate the overall nonisothermal crystallization process. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 408–414, 2002; DOI 10.1002/polb.10101  相似文献   

16.
κ־�� 《高分子科学》2013,31(1):187-200
Biodegradable poly(butylene succinate) (PBS) and layered double hydroxide (LDH) nanocomposites were prepared via melt blending in a twin-screw extruder. The morphology and dispersion of LDH nanoparticles within PBS matrix were characterized by transmission electron microscopy (TEM), which showed that LDH nanoparticles were found to be well distributed at the nanometer level. The nonisothermal crystallization behavior of nanocomposites was extensively studied using differential scanning calorimetry (DSC) technique at various cooling rates. The crystallization rate of PBS was accelerated by the addition of LDH due to its heterogeneous nucleation effect; however, the crystallization mechanism and crystal structure of PBS remained almost unchanged. In kinetics analysis of nonisothermal crystallization, the Ozawa approach failed to describe the crystallization behavior of PBS/LDH nanocomposites, whereas both the modified Avrami model and the Mo method well represented the crystallization behavior of nanocomposites. The effective activation energy was estimated as a function of the relative degree of crystallinity using the isoconversional analysis. The subsequent melting behavior of PBS and PBS/LDH nanocomposites was observed to be dependent on the cooling rate. The POM showed that the small and less perfect crystals were formed in nanocomposites.  相似文献   

17.
The fabrication of syndiotactic polystyrene (sPS)/organoclay nanocomposite was conducted via a stepwise mixing process with poly(styrene‐co‐vinyloxazolin) (OPS), that is, melt intercalation of OPS into organoclay followed by blending with sPS. The microstructure of nanocomposite mainly depended on the arrangement type of the organic modifier in clay gallery. When organoclays that have a lateral bilayer arrangement were used, an exfoliated structure was obtained, whereas an intercalated structure was obtained when organoclay with a paraffinic monolayer arrangement were used. The thermal and mechanical properties of sPS nanocomposites were investigated in relation to their microstructures. From the thermograms of nonisothermal crystallization and melting, nanocomposites exhibited an enhanced overall crystallization rate but had less reduced crystallinity than a matrix polymer. Clay layers dispersed in a matrix polymer may serve as a nucleating agent and hinder the crystal growth of polymer chains. As a comparison of the two nanocomposites with different microstructures, because of the high degree of dispersion of its clay layer the exfoliated nanocomposite exhibited a faster crystallization rate and a lower degree of crystallinity than the intercalated one. Nanocomposites exhibited higher mechanical properties, such as strength and stiffness, than the matrix polymer as observed in the dynamic mechanical analysis and tensile tests. Exfoliated nanocomposites showed more enhanced mechanical properties than intercalated ones because of the uniformly dispersed clay layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1685–1693, 2004  相似文献   

18.
The quiescent nonisothermal bulk crystallization kinetics of two high-density polyethylene resins were investigated by a modified light-depolarizing microscopy (LDM) technique. The technique allows studies at average cooling rates up to 2500°C/min. The polymer was found to crystallize at a pseudo-isothermal temperature even at these very high cooling rates. The overall bulk crystallization rate increased rapidly as the cooling rate and supercooling increased. Crystallization kinetics was analyzed by Avrami analysis. Avrami exponents near 3 suggested spherical growth geometry and instantaneous nucleation at predetermined sites. Observation of spherulites by optical microscopy together with a number density of spherulites that changed little with increase in cooling rate or supercooling supported this model of crystallization behavior. Analysis of the half-time of crystallization based on the Lauritzen and Hoffman secondary nucleation theory indicated that the regime II-III transition was found to occur at a degree of supercooling of approximately 22°C. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 681–692, 1998  相似文献   

19.
Differential scanning calorimetry was used to investigate the isothermal crystallization, subsequent melting behavior, and nonisothermal crystallization of syndiotactic 1,2‐polybutadiene (st‐1,2‐PB) produced with an iron‐based catalyst system. The isothermal crystallization of two fractions was analyzed according to the Avrami equation. The morphology of the crystallite was observed with polarized optical microscopy. Double melting peaks were observed for the samples isothermally crystallized at 125–155 °C. The low‐temperature melting peak, which appeared approximately 5 °C above the crystallization temperature, was attributed to the melting of imperfect crystals formed by the less stereoregular fraction. The high‐temperature melting peak was associated with the melting of perfect crystals formed by the stereoregular fraction. With the Hoffman–Weeks approach, the value of the equilibrium melting temperature was derived. During the nonisothermal crystallization, the Ozawa method was limited in obtaining the kinetic parameters of st‐1,2‐PB. A new method that combined the Ozawa method and the Avrami method was employed to analyze the nonisothermal crystallization of st‐1,2‐PB. The activation energies of crystallization under nonisothermal conditions were calculated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 553–561, 2005  相似文献   

20.
The classical crystallization theories proposed by Avrami, Evans, and Mandelkern wereextended to the nonisothermal situation. The expressions derived from the classical equations canbe expressed in either the differential form or the integral form. A method was provided so as toobtain the parameters characterizing the crystallization rate and mechanism from DSC curves withseveral constant heating or cooling rates. The rate constants of crystallization obtained from bothisothermal and nonisothermal curves of poly(ethylene terephthalate)were compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号