首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Preparation of new types of polyimides with high thermal stability and improved solubility was considered. In this way, two new amide diamines containing bulky pendant units were prepared in two steps: nucleophilic substitution reactions of 1- and 2-aminoanthraquinone with 3,5-dinitrobenzoyl chloride to form amide containing dinitro compounds, and then reduction of resulted dinitro compounds with hydrazine monohydrate in the presence of palladium/activated carbon. Two series of new poly(amide-imide)s were prepared from the reactions of these two diamines with various dianhydrides by one step polyimidation process. All poly(amide-imide)s were characterized by FTIR and 1H-NMR spectroscopies and elemental analysis. The polymers were obtained in high yields with inherent viscosities of 0.54-0.69 dl g−1. X-ray diffraction patterns (XRD) showed that all the polymers were amorphous and therefore this factor in addition to the introduction of bulky anthraquinone group led to good solubility of the polymers in most common organic solvents especially in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and dimethylsulfoxide (DMSO). Thermal analysis showed glass transition temperature between 204 and 226 °C. Decomposition temperatures were more than 293 °C, also 10% weight loss were in the range of 387-419 °C in air.  相似文献   

2.
A series of novel polymers based on 9-alkylcarbazol-3,6-diyl and different aromatic amino groups were synthesized in good yields through modified Ullmann coupling reactions. The resulting polymers were characterized by gel permeation chromatography, differential scanning calorimetry and thermogravimetric analysis. These polymers possess high thermal stability with onset decomposition temperatures of 320-355 °C. Their glass transition temperatures range from 154 °C to 250 °C. The ionisation potentials of the synthesized polymers established by electron photoemission in air technique are in the range 4.95-5.12 eV.  相似文献   

3.
Two series of aromatic poly(1,3,4-oxadiazole-amide)s have been synthesized by low-temperature solution polycondensation reaction of equimolar amounts of aromatic diamines containing preformed oxadiazole rings with diacid chlorides having silicon or hexafluoroisopropylidene groups. These polymers are soluble in polar aprotic solvents and show high thermal stability with decomposition temperature being above 400 °C and glass transition temperature in the range of 250-350 °C. The polyoxadiazole-amides have weight- and number-average molecular weights in the range of 207 000-330 000 and 77 000-131 000, respectively. Conformational parameters of these polymers were calculated by Monte Carlo method with allowance for hindered rotation and discussed in relation with thermal properties. Polymer solutions in NMP were processed into thin free-standing films that showed good mechanical properties with tensile strength in the range of 50-100 MPa, tensile modulus in the range of 2.25-3.56 GPa and elongation to break in the range of 1.65-8.58%.  相似文献   

4.
A series of copolyimides were prepared from benzophenone-3,3′,4,4′-tetracarboxylic dianhydride (BTDA) and various aromatic diamines which contain a fluorenyl group and/or alkyl substituents in ortho position to the amine groups. The effect of the chemical composition on the glass transition temperature (Tg), thermal stability as well as on the dielectric constant of these polymers was studied. High Tg polymers (Tg ranging from 260 °C to 370 °C), withstanding temperatures as high as 400 °C for 10 h and having a low dielectric constant (from 2.6 to 3.1) were successfully synthesized. All these polymers were able to crosslink under UV or thermal treatments.  相似文献   

5.
A new class of benzoxazine-containing monomers, namely bis(benzoxazine-maleimide)s, has been prepared from hydroxyphenylmaleimide, paraformaldehyde and various diamines. This series of difunctional maleimide benzoxazines has been difficult to synthesize using previously reported benzoxazine synthesis conditions. The structures of the monomers are confirmed by Fourier transform infrared spectroscopy (FTIR), 1H and 13C nuclear magnetic resonance spectroscopy (NMR) and elemental analysis. Polymerization behavior of the monomers is studied by differential scanning calorimetry (DSC), showing two exotherms at different temperature ranges. The 1st exotherm is due to the combination of benzoxazine ring-opening polymerization and addition-polymerization of bismaleimide. FTIR is also used to investigate the polymerization process. The dynamic mechanical analyses (DMA) of the obtained polymers reveal the glass-transition temperatures as high as 289-307 °C. Thermogravimetric analyses (TGA) show the 5% weight loss temperatures ranging from 374 to 383 °C with char yield ranging from 55% to 62% at 800 °C in N2 atmosphere.  相似文献   

6.
A series of novel polyamide-imides (PAIs) with high glass transition temperature were prepared from diimide-dicarboxylic acid, 2,2′-bis(trifluoromethyl)-4,4′-bis(trimellitimidophenyl)biphenyl (BTFTB), by direct polycondensation with various diamines in N-methyl-2-pyrrolidinone using triphenyl phosphite and pyridine as condensing agents in the presence of dehydrating agent (CaCl2). The yield of the polymers was obtained was high with moderate to high inherent viscosities (0.80-1.03 dL g−1). Gel permeation chromatography (GPC) of the polymers showed number-average and weight-average molecular weights up to 8.6 × 104 and 22 × 104, respectively. The PAIs were amorphous in nature. Most of the polymers exhibited good solubility in various solvents such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), pyridine, cyclohexanone and tetrahydrofuran. The polymer films had tensile strength in the range of 79-103 MPa, an elongation at break in the range of 6-16%, and a tensile modulus in the range between 2.1 and 2.8 GPa. The glass transition temperatures of the polymers were determined by DMA method and they were in the range of 264-291 °C. The coefficients of thermal expansion (CTE) of PAIs were determined by TMA instrument and they were between 29 and 67 ppm °C−1. These polymers were fairly thermally stable up to or above 438 °C, and lose 10% weight in the range of 446-505 °C and 438-496 °C, respectively, in nitrogen and air. These polymers had exhibited 80% transmission wavelengths which were in the range of 484-516 nm and their cutoff wavelengths were in between 418 and 434 nm. The PAIs with trifluoromethyl group have higher bulk density resulting in higher free volume and then lowering the dielectric constant.  相似文献   

7.
A one-pot synthesis method for the preparation of polyimides containing biphenyl units was developed via nickel-catalyzed coupling reaction of bis(chlorophthalimide)s which were prepared from chlorophthalic anhydrides and diamines in xylene. The resulting polyimides had inherent viscosities of above 0.60 dL g−1. In the meantime, the copolymerizations from a mixture of three isomeric bis(chlorophthalimide)s gave the polymers with inherent viscosities of 0.36-0.55 g dL−1. The solubility and film formability of the copolymers were better than those of homopolymers from bis(4-chlorophthalimide). The 10% weight loss of these polyimides was between 470 and 531 °C.  相似文献   

8.
A novel sulfonated diamine, 1,2-dihydro-2-(3-sulfonic-4-aminophenyl)-4-[4-(3-sulfonic-4-aminophenoxy)-phenyl]-phthalazin-1-one(S-DHPZDA), was successfully synthesized and two series of six-membered sulfonated polyimides (SPIs) were prepared from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), S-DHPZDA, and nonsulfonated diamines DHPZDA or 4,4′-diaminodiphenyl ether (ODA). The chemical structure of the S-DHPZDA and the SPIs were characterized by 1H NMR and FT-IR. Tough, brownish and transparent membranes were cast from SPIs’ solution in NMP. The water uptake, swelling ratio, chemical and thermal stability, hydrolytic and oxidative stability as well as proton conductivity of these new polymers were investigated systematically. Compared with Nafions, the obtained SPI membranes have onset decomposed temperatures of these two series SPIs were above 318 °C and decomposed temperature of main chain were 565 °C and excellent dimension stabilities on similar IECs. Introduction of phthalazinone moieties had improved the copolyimides’ solubility in polar aprotic organic solvents like m-cresol, NMP, DMSO, DMF etc. The SPIs had high proton conductivity (σ) in the order of magnitude of 10−3 to 10−2 S cm−1 depending on the degree of sulfonation (DS) of the polymers.  相似文献   

9.
Two kinds of aromatic, unsymmetrical diamines with ether-ketone group, 3-amino-4′-(4-amino-2-trifluoromethylphenoxy)-benzophenone and 4-amino-4′-(4-amino-2-trifluoromethylphenoxy)-benzophenone, were successfully synthesized with two different synthetic routes. Then, they were polymerized with 4,4′-oxydiphthalic anhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, and 2,2′-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride to form a series of fluorinated polyimides via a conventional two-step thermal or chemical imidization method. The resulting polyimides were characterized by measuring their solubility, viscosity, mechanical properties, IR-FT, and thermal analysis. The results showed that the polyimides had inherent viscosities of 0.48-0.68 dl/g and were easily dissolved in bipolarity solvents and common, low-boiling point solvents. Meanwhile, the resulting strong and flexible polyimide films exhibited excellent thermal stability, e.g., decomposition temperatures (at 10% weight loss) are above 575 °C and glass-transition temperatures in the range of 218-242 °C. The polymer films also showed outstanding mechanical properties, such as tensile strengths of 86.5-132.8 MPa, elongations at break of 8-14%, and initial moduli of 1.32-1.97 GPa. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced applications.  相似文献   

10.
New optically active polyamides were synthesized according to two ways: using a microwave-assisted polycondensation of an optically active isosorbide-derived diacylchloride with different aromatic diamines in NMP and using interfacial polymerization from an isosorbide-derived diamine with different diacylchlorides. The polymers are obtained with inherent viscosities in the range from 0.11 to 1.05 dL/g. The DSC and TGA measurements clearly demonstrate the high thermal stability of these polymers when considering the range of the melting points from 200 °C to 300 °C and the absence of decomposition till 350 °C.  相似文献   

11.
Two new diacid monomers, 2,2′-sulfide bis(4-methyl phenoxy acetic acid) and 2,2′-sulfoxide bis(4-methyl phenoxy acetic acid) were successfully synthesized by refluxing the 2,2′-sulfide bis(4-methyl phenol) and 2,2′-sulfoxide bis(4-methyl phenol) with chloroacetonitrile in the presence of potassium carbonate, and subsequent basic reduction. Two novel series of poly(sulfide-ether-amide)s and poly(sulfoxide-ether-amide)s with aliphatic units in the main chain were prepared from diacids with various diamines.The polyamides were obtained in quantitative yields and their inherent viscosities were in the range of 0.43-0.89 dl g−1 at a concentration of 0.5 g dl−1 in N,N-dimethylacetamide (DMAc) solvent at 25 °C. They showed good thermal stability. The temperature for 10% weight loss in argon atmosphere was in the range of 350-415 °C. The polymers showed glass transition temperatures between 228 and 261 °C. Almost all of the polyamides were readily soluble in a variety of polar solvents such as N-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO).  相似文献   

12.
A series of liquid crystalline and photoactive polymers were synthesized from biphenylphosphorodichloridate with various 4,4′-bis(m-hydroxyalkyloxy)stilbenes (m = 2, 4, 6, 8, 10) in chloroform by solution polycondensation method using an acid scavenger. The resultant polymers were characterized by inherent viscosity, FT-IR, 1H, 13C and 31P NMR spectroscopies. The liquid crystalline (LC) properties were studied using HOPM and DSC and it was inferred that out of the five polymers synthesized, higher methylene chain containing polymers (m = 6, 8, 10) exhibited LC properties. Thermogravimetric analysis revealed that all the polymers were stable in between 290 and 367 °C and underwent degradation thereafter. The thermal stability and char yield of the polymers decreased with increase in flexible methylene chain. The photochemical properties of these polymers were investigated by UV and fluorescence spectroscopy. Crosslinking proceeds via 2π-2π cycloaddition reaction of the -CHCH- of the stilbene moieties. The rate of crosslinking increases with increase in methylene chain length in the polymer backbone. The fluorescence spectra showed that the longer methylene spacer containing polymers exhibited larger red-shifts than the shorter spacer containing polymers.  相似文献   

13.
Three new diamines 1,2-di(p-aminophenyloxy)ethylene, 2-(4-aminophenoxy)methyl-5-aminobenzimidazole and 4,4-(aminopheyloxy) phenyl-4-aminobenzamide were synthesized and polymerized with 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BP), 4,4′-(hexafluoroisopropyledene)diphthalic anhydride (HF) and 3,4,9,10-perylene tetracarboxylic acid dianhydride (PD) either by one step solution polymerization reaction or by two step procedure. The later includes ring opening poly-addition to give poly(amic acid), followed by cyclodehydration to polyimides with the inherent viscosities 0.62-0.97 dl/g. Majority of polymers are found to be soluble in most of the organic solvents such as DMSO, DMF, DMAc, m-cresol even at room temperature and few becomes soluble on heating. The degradation temperature of the resultant polymers falls in the ranges from 240 °C to 550 °C in nitrogen (with only 10% weight loss). Specific heat capacity at 300 °C ranges from 1.1899 to 5.2541 J g−1 k−1. The maximum degradation temperature ranges from 250 to 620 °C. Tg values of the polyimides ranged from 168 to 254 °C.  相似文献   

14.
A series of novel poly(imide-siloxane)s (PIS) were synthesized by the grafting of amine terminated soluble imides to the siloxane backbone. The amine terminated imides were synthesized by choosing suitable anhydrides and amines to get the imides that are soluble in polar and non-polar solvents. The imides were grafted to the siloxane backbone by the epoxy group cleavage. All the polymers were obtained in quantitative yields with the inherent viscosities ranging from 0.22 to 1.2 dL g−1. The polymers were characterized by FT-IR, 1H and 13C NMR, and were examined for their thermal properties. The polymers were found to be stable up to a temperature 350 °C. The DSC results showed a single glass transition in the negative temperature, whereas the DTA revealed another glass transition in the positive end for some of the polymers showing phase separation. Polymer films were prepared employing the coupling reaction between PIS and the polydimethylsiloxane matrix by varying the amount of incorporation of PIS in the films. The polymer films had a tensile strength of 35-82 MPa with a percentage elongation of 86-271%. The contribution of polar and dispersion component towards the total surface energy was studied by the contact angle measurement and a reduction in surface tension of 14 mN m−1 was achieved with the fluorine containing PIS membrane.  相似文献   

15.
A series of sulfonated block poly(ether ether ketone)s with different sulfonic acid group clusters were successfully synthesized by nucleophilic displacement condensation. Membranes were accordingly cast from their DMSO solutions, and fully characterized by determining the ion-exchange capacity, water uptake, proton conductivity, dimensional stabilities and mechanical properties. The experimental results showed that the main properties of the membrane can be tailored by changing the cluster size of sulfonic acid groups. The membrane of block-7c(40) has good mechanical, oxidative and dimensional stabilities together with high proton conductivity (5.09 × 10−2 S cm−1) at 80 °C under 100% relative humidity. The membranes also possess excellent thermal and dimensional stabilities. These polymers are potential and promising proton conducting membrane material for PEM full cell applications.  相似文献   

16.
The synthesis and characterization of a new series of side-chain liquid crystal polyepichlorohydrin (PECH) polymers are described. The structures and thermal properties of the synthesized polymers were investigated using IR, NMR, polarized optical microscopy and differential scanning calorimetry. A substantial increase of the glass transition temperature with the degree of substitution of side-chain groups was observed. Polymers with a degree of substitution of side groups, of at least 60%, exhibited thermotropic liquid crystalline behaviour. The polymers present thermal liquid crystalline behaviour and form Schlieren and thread texture upon cooling from the isotropic phase, after annealing for 120 min at different temperatures. In addition, the thermal decomposition of PECHOPhPhCN was studied by thermogravimetry under both nitrogen and air environments. The temperature of the maximum decomposition rate was about 340 °C. Weight loss decreased considerably after 350 °C and was approximately 98% at 700 °C. Chemical modification of functional polymers offers a simple method for obtaining liquid crystalline polymers whose transition temperature can be tailored by varying the amount of substitution, however complete substitution cannot be achieved.  相似文献   

17.
Ethyl α-cyano-4-(methacryloxy)cinnamate was synthesized to prepare new photosensitive polymers. Homopolymerization and copolymerizations were carried out in solution in chloroform at 65 °C using AIBN as an initiator. Methyl methacrylate was chosen as comonomer for the studies of copolymerzation. The structures formed were characterized by IR and 1H NMR spectroscopies. The values of reactivity ratios of the comonomers calculated according to the Finneman-Ross method indicated that the reactivity of the synthesized photosensitive monomer is lower than that of MMA. Thin films of the obtained polymers were prepared to study their ability to crosslink under UV irradiation. The photodimerization of the cinnamate moieties was characterized.  相似文献   

18.
We have synthesized a series of new diamines containing bis(ethynylaniline) linkages by bromine substitution reaction of ethynylaniline with 4,4′-bis(4-bromophthalimido)diphenylether (PODA) or 1,4-bis(4-bromophthalimido)benzene (PPDA). The intermediates were separated at each step, purified and characterized by the spectroscopic techniques. The model compound having imide and triple bond moiety was synthesized in order to elucidate the nature of the products formed from the ethynyl curing by FT-IR spectroscopy. The polymerization reaction of ethynylaniline diamines with various dianhydrides gave fully imidized and soluble aromatic polyimides. The thermally cured polyimide samples displayed good solvent resistance. The thermal crosslinking of triple bond moieties in the main chain was carried out by heating in the temperature range from 150 to 400 °C. The glass transition temperature of polyimide completely disappeared after heat treatment at 400 °C for 5 min. The polyimides derived from diamines containing bis(ethynylaniline) groups were thermally stable after heat treatment.  相似文献   

19.
New aliphatic-aromatic and fully aromatic phosphonate polyamides were prepared by polycondensation reaction of our synthesized aromatic diamine: tetraethyl[(2,5-diamino-3,6-dimethylbenzene-1,4-diyl)dimethanediyl]bis(phosphonate) with the specific di-acylchloride (adipoyl chloride, isophthaloyl chloride and terephthaloyl chloride). The chemical structure of all samples were characterized by (1H and 31P) NMR, MALDI-TOF MS, FT-IR tools, whereas their thermal properties were determined by DSC and TGA techniques. The phosponate polyadipamide (referred as PAP) is a semi-crystalline sample with a melting temperature at about 261 °C and glass transition (Tg) of 71 °C. All polymers show two thermal degradation steps in the temperature range 270-550 °C. Each polymer, independently its structure, shows the first maximum rate of thermal decomposition temperature (PDT) around 300-310 °C, which may be due to thermal degradation of phoshonate groups. MALDI-TOF spectra, beside the linear oligomers terminated with the specific groups expected in accord to the synthesis procedure, reveals the presence of cyclic oligomers in the polyadipamide and polyisophthalamide samples.  相似文献   

20.
Three new hydrazo-bridged diamines, 4,4′-bis [4-(4-aminophenyloxy) phenylhydrazyl] biphenyl (BPD-2), 4,4′-bis [4-(4-aminophenyloxy) phenylhydrazyl] biphenyl ether (SPD-2) and 4,4-bis [4-(4-aminophenyloxy) phenyl] hydrazine (APD-2), were synthesized by the reduction of three azo-diols, 4,4′-bis (4-azo-1-hydroxyphenyl) biphenyl (BPD), 4,4′-bis (4-azo-1-hydroxyphenyl) biphenyl ether (SPD) and azo-4-hydroxybenzene (APD), and polymerized with pyromellitic dianhydride (PM), 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BP) and 3,4,9,10-perylenetetracarboxylic acid dianhydride (PR) either by one-step solution polymerization or by two-step procedure which includes ring-opening polyaddition to give poly(amic acid) followed by cyclic dehydration to polyimide. The monomers and polyimides were characterized by their elemental analyses, FTIR and 1H NMR spectroscopy. Glass transition temperatures of the polymers are quite high (175-310 °C), characteristic of polyimides. The decomposition temperatures for 10% weight loss fall in the range of 280-575 °C in nitrogen. Activation energies of pyrolysis for each of the polymers calculated from Horowitz and Metzger's method are also high (52.54-95.28 kJ mol−1). The inherent viscosities of the polyimides at a concentration of 0.5 g/dl in DMF range from 0.94 to 1.93 dl/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号