首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
张建强  顾群 《高分子科学》2015,33(8):1104-1113
The correlation between ring-opening polymerization(ROP) of cyclic butylene terephthalate(CBT) and crystallization of polymerized CBT(p CBT) strongly affected the final properties of p CBT and its composites.The major objective of this contribution is to pinpoint the threshold temperature between them and the interrelation is successfully disclosed.That is,crystallization during polymerization occurs below 204 °C and the crystallization properties of p CBT are determined by this isothermal ROP stage; polymerization and crystallization are gradually separated with the increase of temperature of ROP(TP) from 204 °C,and the crystallization properties of p CBT are dominated by cooling stage; only polymerization is performed above 212 °C.Moreover,quantitative analysis suggests that uniform crystal size distributions and thicker lamellar crystals derive from the stage of crystallization during polymerization.On the contrary,the crystal size distributions become wider above 204 °C of TP and lead to obvious double melting peaks during heating scan.These efforts provide a very useful guide for the related investigation and application of CBT.  相似文献   

2.
The polymerization of a cyclic butylene terephthalate (CBT) oligomer was studied as a function of temperature (T=200 and 260°C, respectively) by modulated DSC (MDSC). The first heating was followed by cooling after various holding times (5, 15 and 30 min) prior to the second heating which ended always at T=260°C. This allowed us to study the crystallization and melting behavior of the resulting polybutylene terephthalate (PBT), as well. In contrary to the usual belief, the CBT polymerization is exothermic and the related process is superimposed to that of the CBT melting. The melting behavior of the PBT was affected by the polymerization mode (performed below or above the melting temperature of the PBT product) of the CBT. Annealing above the melting temperature of PBT yielded a product featuring double melting. This was attributed to the presence of crystallites with different degrees of perfection. The crystals perfection which occurred via recrystallization/remelting was manifested by a pronounced exothermic peak in the non-reversing trace.  相似文献   

3.
Poly(butylene terephthalate) (PBT) had been covalently attached onto the surface of multiwalled carbon nanotubes (MWNTs) by a “grafting from” method based on in situ ring‐opening polymerization (ROP) of cyclic butylene terephthalate oligomers (CBT) using MWNT‐supported initiator (MWNT‐g‐Sn). The Sn? O bond grafted on the surface of MWNTs, which was confirmed by X‐ray photoelectron spectroscopy, provided the initiating sites for ROP of CBT. Fourier transformed infrared spectroscopy and nuclear magnetic resonance were used to confirm the chemical structure of MWNT‐graft‐PBT copolymer and emission transmission electron microscope was utilized to observe the nanostructure of the PBT functionalized MWNTs. A distinct core–shell structure with PBT layer as the shell could be observed after functionalization of PBT despite it was not uniform. The results of thermogravimetric analysis indicated that the grafting ratio of PBT was about 59.3%. Furthermore, the solubility of the PBT functionalized MWNTs in phenol/tetrachloroethane had also been investigated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The melting behavior of poly(butylene terephthalate) (PBT) has been investigated, and a simulation has been performed to determine whether the multiple melting endotherms observed during the thermal analysis of PBT can be explained by the simultaneous melting and recrystallization of an initial distribution of crystal melting temperatures that contains only one maximum and two inflection points. Specimens that were cooled at constant rates from the melt showed between one and three melting endotherms upon heating in a differential scanning calorimeter (DSC). The position and breadth of the crystallization exotherms upon cooling from the melt and small-angle x-ray scattering showed that as the cooling rate is increased, the distribution of melting temperatures broadens and shifts to lower temperatures. By combining temperature-dependent recrystallization with an initial distribution of melting temperatures, simulated DSC curves were produced that agreed well with experimental DSC curves. In instances of triple peaked curves, the high temperature peak was due to crystals formed during the scanning process, and the middle and low temperature peaks were due to crystals originally present in the material. Satisfactory agreement between the experimental and simulated curves was found without considering additional crystallization from the amorphous regions during the scanning process.  相似文献   

5.
Poly(butylene terephthalate)/poly(butylene terephthalate-e-caprolactone) is a new A/AxB1-x binary crystalline blend with intra-molecular repulsion interaction. Using the mean-field binary interaction model, the value of interaction parameter between the butylene terephthalate and caprolactone structural unit was first reported to be 0.305. This blend exhibited different crystallization behavior from a typical homopolymer/copolymer blend, which was carefully investigated by di?erential scanning calorimetry. It was found that poly(butylene terephthalate-e-caprolactone) copolymers have a great effect on the pure poly(butylene terephthalate) chain mobility and poly(butylene terephthalate) crystalline lattice packing. In the meantime, the crystallization of butylene terephthalate segments in copolymers was restricted by the previously formed poly(butylene terephthalate) crystallites. The two constituents for blending can not form a co-crystal in the range of composition even if they have the same butylene terephthalate unit. It can be concluded that longersegments in a copolymer would be beneficial for the formation of a co-crystal in blends.  相似文献   

6.
The block copolymers of poly(butylene succinate) (PBS) and poly(butylene terephthalate) (PBT) were synthesized by melt processing for different times. The sequence distribution, thermal properties, and crystallization behavior were investigated over a wide range of compositions. For PBS/PBT block copolymers it was confirmed by statistical analysis from 1H-NMR data that the degree of randomness (B) was below 1. The melting peak (Tm) gradually moved to lower temperature with increasing melt processing time. It can be seen that the transesterification between PBS and PBT leads to a random copolymer. From the X-ray diffraction diagrams, only the crystal structure of PBS appeared in the M1 copolymer (PBS 80 wt %) and that of PBT appeared in the M3 (PBS 50 wt %) to M5 (PBS 20 wt %) copolymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 147–156, 1998  相似文献   

7.
Blends of poly(butylene terephthalate) (PBT) and polyestercarbonate (PEC), copolyesters consisting of polycarbonate (PC) and polyarylate (PAr), have been studied by thermal analysis to determine miscibility. The PBT blends with PAr and PEC containing 30 wt % of carbonate unit or less appeared to be miscible, and the tendency for stable single‐phase was observed to decrease as the content of carbonate unit in PEC copolymer increased. As determined with the crystalline phase behavior, the miscibility of PEC with PBT appeared to have a maximum around 10 ∼ 30 wt % of carbonate content in PEC copolymer, and this result was attributed to the internal repulsion effect between ester and carbonate repeating units in PEC copolymer. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 803–811, 2000  相似文献   

8.
三元乙丙橡胶环氧化增韧聚对苯二甲酸丁二酯的研究   总被引:1,自引:0,他引:1  
三元乙丙橡胶环氧化增韧聚对苯二甲酸丁二酯的研究王学会,张会轩,王新华,王志刚,蒋俊光,姜炳政(吉林工学院化工系,长春,130012)(中国科学院长春应用化学研究所)关键词三元乙丙橡胶,环氧化,PBT,增韧作用,共混物聚对苯二甲酸丁二酯(PBT)具有优...  相似文献   

9.
Novel poly(butylene terephthalate) (PBT)/polyhedral oligomeric silsesquioxane (POSS) nanocomposites were synthesized by ring‐opening polymerization of cyclic poly(butylene terephthalate) initiated by functionalized POSS with various feed ratios. The impact of POSS incorporation on melting and crystallization behaviors of PBT/POSS nanocomposites was investigated by means of X‐ray diffraction and differential scanning calorimetry. It was found that the novel organic–inorganic association result in the significant alterations in the melting and crystallization behavior of PBT. Thermal studies confirmed that the incorporation of POSS can enhance the thermal stability of the polymers, and the copolymer glass transition temperature increased with the increasing of POSS macromonomer content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1853–1859, 2010  相似文献   

10.
Pressure effect on the melting behavior of poly(butylene terephthalate) (PBT) and poly(hexamethylene terephthalate) (PHT) was studied by high‐pressure DTA (HP‐DTA) up to 320 and 530 MPa, respectively. Cooling rate dependence on the DSC melting curves of the samples cooled from the melt was shown at atmospheric pressure. Stable and metastable samples were prepared by cooling from the melt at low and normal cooling rates, respectively. DTA melting curves for the stable samples showed a single peak, and the peak profile did not change up to high pressure. Phase diagrams for PBT and PHT were newly determined. Fitting curves of melting temperature (Tm) versus pressure expressed by quadratic equation were obtained. Pressure coefficients of Tm at atmospheric pressure, dTm/dp, of PBT and PHT were 37 and 33 K/100 MPa, respectively. HP‐DTA curves of the metastable PBT showed double melting peaks up to about 70 MPa. In contrast, PHT showed them over the whole pressure region. HP‐DTA of stable poly(ethylene terephthalate) (PET) was also carried out up to 200 MPa, and the phase diagram for PET was determined. dTm/dp for PET was 49 K/100 MPa. dTm/dp increased linearly with reciprocal number of ethylene unit. The decrease of dTm/dp for poly(alkylene terephthalate) with increasing a segmental fraction of an alkyl group in a whole molecule is explained by the increase of entropy of fusion. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 262–272, 2000  相似文献   

11.
Binary blends of poly(l-lactide) (PLLA) and poly(butylene terephthalate) (PBT) containing PLLA as major component were prepared by melt mixing. The two polymers are immiscible, but display compatibility, probably due to the establishment of interactions between the functional groups of the two polyesters upon melt mixing. Electron microscopy analysis revealed that in the blends containing up to 20% of poly(butylene terephthalate), PBT particles are finely dispersed within the PLLA matrix, with a good adhesion between the phases. The PLLA/PBT 60/40 blend presents a co-continuous multi-level morphology, where PLLA domains, containing dispersed PBT units, are embedded in a PBT matrix. The varied morphology affects the mechanical properties of the material, as the 60/40 blend displays a largely enhanced resistance to elongation, compared to the blends with lower PBT content.  相似文献   

12.
Compared with poly(butylene terephthalate) (PBT), glass-fibre-reinforced poly(butylene terephthalate) (GF-PBT) is difficult to flame retard with halogen-free flame retardants. In the present study, the aluminium salt of hypophosphorous acid (AP) was used as a flame retardant for GF-PBT. A series of flame-retardant GF-PBT composites was prepared via melt compounding. The flame retardance and combustion behaviour of the composites were studied by limiting oxygen index (LOI), vertical burning test (UL-94) and cone calorimetric test. Thermal behaviours and thermal decomposition kinetics were investigated by thermogravimetric analysis (TGA) under N2 atmosphere. The addition of AP to the composites could result in an increased LOI value, a UL-94 V-0 (1.6 mm) classification and a better fire performance in cone calorimetric tests. The char morphology observation after flame-retardant tests, calculation of decomposition kinetics, X-ray photoelectron spectroscopy (XPS) and infra-red spectral analysis of the char residue confirmed the condensed-phase flame-retardant mechanism. Furthermore, the mechanical properties of the flame-retardant composites were not deteriorated, retaining an acceptable level.  相似文献   

13.
In this paper, cetyl pyridium chloride (CPC) was employed to modify the montmorillonite. TGA analysis shows that the organic modified clay has higher thermal stability than hexadecyl trimethyl ammonium chloride modified montmorillonite and is suitable to be used for preparing poly(butylene terephthalate) (PBT)/clay nanocomposites at the high temperature. And then PBT/clay nanocomposites were prepared by direct melt intercalation. The results of XRD, TEM and HREM experiments show the formation of exfoliated-intercalated structure. The thermal stability of the nanocomposites does not evidently decrease, but the char residue at 600 °C remarkably increase compared with pure PBT. DSC results indicate that clay improves the melting temperature, the crystallization rate and crystallinity of the PBT molecules in the nanocomposites.  相似文献   

14.
The melting behavior and the crystallization kinetics of poly(butylene terephthalate/thiodiethylene terephthalate) copolymers were investigated by DSC technique. The multiple endotherms were influenced both by T c and composition. By applying the Hoffman—Weeks' method, T m 0 the of the copolymers was derived. The isothermal crystallization kinetics was analyzed according to the Avrami's treatment. Values of the exponent n close to 3 were obtained, independently of T c and composition. The introduction of thiodiethylene terephthalate units decreased the PBT crystallization rate. H m was correlated to c p for samples with different degree of crystallinity and the results were interpreted on the basis of the existence of an interphase.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

15.
Thermoplastic polyester elastomer (TPEE) blends with poly(butylene terephthalate) (PBT) were prepared by melt compounding for the phase morphology and mechanical property studies. Although PBT is immiscible with the continuous soft poly(tetramethylene glycol) (PTMEG) phase of TPEE, it is miscible with the discrete hard PBT one of TPEE. Therefore, PBT and TPEE are compatible and their blends reveal very low level of interfacial tension and very small size of discrete domains, as well as good interfacial adhesion between two phases, which provide high possibility to prepare TPEE alloys with controllable properties. Mechanical test results reveal that both the modulus and yield and tensile strengths increase with increasing weight ratios of PBT. The increased system rigidity and decreased system plasticity are further confirmed by the cyclic tensile tests. The main objective of this work is to provide useful information on the structure and property control of TPEE by simple mixing with aromatic polyesters.  相似文献   

16.
Different crystallization kinetic models (Avrami and Tobin) have been applied to study the crystallization kinetics of virgin poly(butylene terephthalate) (PBT) and filled PBT systems under isothermal experimental conditions. The experimental data have been analyzed with a nonlinear, multivariable regression program. The kinetic parameters for the isothermal crystallization have been determined. The analysis results indicate that both models satisfactorily represent the isothermal crystallization kinetics. PBT crystallizes most slowly. The presence of nanoclays or nanofibers, added as fillers, enhances the crystallization rate of PBT composites. An analysis of the kinetic data with the Avrami and Tobin models has shown little change in the crystallization exponent compared with that of virgin PBT. The crystallization rate constant decreases with a rise in the temperature for the two models. This trend has been observed for similar polyester systems reported in the literature. The dispersion of the clay layers in the PBT nanocomposites has been characterized with wide‐angle X‐ray diffraction and transmission electron microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1344–1353, 2007  相似文献   

17.
The occurrence of ester-interchange reactions during PET/PBT blend processing has been confirmed by 13C-NMR measurements. The limitations of the method for precise quantification of the extent of reaction between high molecular weight polyester blends have also been pointed out. Titanium alkoxide has been confirmed as an efficient catalyst, and, within experimental precision, the stabilizing effect of triphenyl phosphite addition has been demonstrated. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
Telechelic ionomeric poly(butylene terephthalate) nanocomposites with organically modified clays have been prepared by the melt intercalation technique both in Brabender mixer and in twin screw-extruder. The presence of ionic groups tethered at the end of the polymer chains permits electrostatic interaction between the polymer and the surface of an organically modified clays providing a thermodynamic driving force for the dispersion of the clay platelets in the polymer matrix. The improved dispersion has been verified by TEM and XRD analyses. Nanocomposites with telechelic polymers present therefore consistently higher thermo-mechanical properties and improved thermal and hydrolytic stability respect to nanocomposites with standard PBT. Nanocomposite obtained using PBT with 3% telechelic ionic groups and with 5% of clay present a heat deflection temperature that is 48 °C higher compared to that of the commercial material. The presence of the clay also slightly increases the thermal and hydrolytic stability respect to standard PBT.  相似文献   

19.
Real-time x-ray scattering at elevated temperatures has been used to investigate the thermal expansion characteristics of poly(butylene terephthalate), PBT. Changes in the six lattice parameters of the α-form of PBT were obtained from wide-angle x-ray scattering over the temperature range from 35 to 215°C. The linear thermal expansion coefficients relating the unit cell parameters at temperature T to their values at 0°C are found to be The temperature dependence of both the long period and the lamellar thickness of semicrystalline PBT were determined from real-time small-angle x-ray scattering analysis of the one-dimensional electron density correlation function. The long period, lamellar thickness, and degree of crystallinity increase as the temperature increases. We find an average linear thermal expansion coefficient of the bulk material to be αave = 5.0 × 10−4°C−1. © 1992 John Wiley & Sons, Inc.  相似文献   

20.
We clarify the reaction mechanisms and kinetics in melt‐reacted blends consisting of functional polysiloxanes and poly(butylene terephthalate) (PBT) with a model compound study. As models for polysiloxanes, we have selected two monodisperse ω‐functionalized siloxane oligomers with Si? H and Si? vinyl moieties. To mimic PBT, we have chosen low molecular weight compounds representative for in‐chain and end‐functional groups of the polymer; ester, carboxylic acid, alcohol, and vinyl. Uncatalyzed and platinum‐catalyzed reactions have been performed in sealed vials. Reaction products have been characterized by gradient polymer elution chromatography, Fourier transform infrared spectroscopy, and size exclusion chromatography. PBT functional groups reactive toward functional siloxane oligomers at high temperatures in the presence and absence of a catalyst have been identified, and an estimate of relative reaction kinetics has been provided. We suggest reaction mechanisms compatible with our results and with literature data. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1952–1961, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号