首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A novel kind of aromatic diamine,N-(4-(4-(2,6-diphenyl pyridine-4-yl)phenoxy)phenyl)-3,5-diaminobezamide (DPDAB),was synthesized via aromatic nucleophilic substitution of 3,5-dinitrobenzoylchloride with 4-(4-(2,6- diphenylpyridine-4-yl)phenoxy)aniline(DPPA),followed by palladium-catalyzed hydrazine reduction.This monomer was used to prepare polyimides(PIs)based on reaction with several commerically avaiable tetracarboxylic dianhydrides such as pyromellatic dianhydride(PMDA),benzophenone tetracarboxylic acide dianhydride(BTDA)and bicycle[2.2.2]oct-7-enc- 2,3,5,6-tetracarboxylic dianhydride(BCDA).These PIs had inherent viscosity in the range of 0.34-0.76 dL/g and showed good solubility in various aprotic polar solvents.The glass-transition tempratures(T_gs)of the PIs were in the range of 184-302℃,and showed high thermal stability with 10%weight loss in the temperature range of 360-500℃under nitrogen atmosphere.  相似文献   

2.
New unsymmetrical diamine monomer containing triaryl imidazole pendent group,4-[4-(4,5-diphenyl-1H-imidazol-2-yl)phenoxy] -1,3-benzenediamine,was synthesized via aromatic substitution reaction of 1-chloro-2,4-dinitrobenzene with 4-(4,5- diphenyl-1H-imidazol-2-yl)phenol,followed by palladium-catalyzed hydrazine reduction.This new monomer was further confirmed by FT-IR,~1H NMR and ~(13)C NMR.Novel polyamides having pendant triaryl imidazole group were prepared by the phosphorylation polycondensation of fou...  相似文献   

3.
A series of new polyimides (PIs) containing di-tert-butyl side groups were synthesized via the polycondensation of 4-(4-amino-2-chlorophenyl)-1-(4-aminophenoxy)-2,6-di-tert-butylbenzene (3) with various aromatic tetracarboxylic dianhydrides. The introduction of the asymmetric di-tert-butyl groups and twisted-biphenyl structures is an effective way to increase the inter chain distance and decrease the intermolecular interaction and packing ability of the resulted polymers. Thus, these novel PIs exhibited low dielectric constants (2.83-3.10), low moisture absorption (0.95-1.69%), excellent solubility, and high glass transition temperatures (307-456 °C). The PIs derived from the new diamine and the rigid pyromellitic dianhydride (PMDA) were soluble in N-methyl-2-pyrrolidinone, N,N-dimethylacetamide, tetrahydrofuran, m-cresol, and cyclohexanone. The polymers also show good retention of storage modulus at high temperature (325 °C). In addition, 1H NMR spectrum of the diamine 3 revealed that the protons of 4-aminophenoxy moiety are not chemical shift equivalent.  相似文献   

4.
Two novel light-emitting materials bis-[2′-2″-(9H-fluoren-2-yl)-vinyl-8-hydroxyquinoline] zinc(II) (3) and bis-[2′-4″-(4,5-diphenyl-1H-imidazol-2-yl)styryl-8-hydroxyquinoline] zinc(II) (4) containting 8-hydroxyquinoline and fluorene or imidazole moieties have been synthesized. The optical properties of these complexes were influenced by the styryl substituents, and exhibited orange-emission. They have higher fluorescence quantum yields than Alq3, and good stabilities with thermal decomposition temperatures 395 °C and 435 °C. The single-layer OLED fabricated by 3 emitted lemon-yellow, and exhibited good device performance with a maximum luminance of 489 cd m−2, and luminance efficiency of up to 0.41 cd A−1. The single-layer OLED fabricated by 4 emitted yellow-green, and exhibited good device performance with a maximum luminance of 323 cd m−2, and luminance efficiency of up to 0.54 cd A−1.  相似文献   

5.
Three new hydrazo-bridged diamines, 4,4′-bis [4-(4-aminophenyloxy) phenylhydrazyl] biphenyl (BPD-2), 4,4′-bis [4-(4-aminophenyloxy) phenylhydrazyl] biphenyl ether (SPD-2) and 4,4-bis [4-(4-aminophenyloxy) phenyl] hydrazine (APD-2), were synthesized by the reduction of three azo-diols, 4,4′-bis (4-azo-1-hydroxyphenyl) biphenyl (BPD), 4,4′-bis (4-azo-1-hydroxyphenyl) biphenyl ether (SPD) and azo-4-hydroxybenzene (APD), and polymerized with pyromellitic dianhydride (PM), 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BP) and 3,4,9,10-perylenetetracarboxylic acid dianhydride (PR) either by one-step solution polymerization or by two-step procedure which includes ring-opening polyaddition to give poly(amic acid) followed by cyclic dehydration to polyimide. The monomers and polyimides were characterized by their elemental analyses, FTIR and 1H NMR spectroscopy. Glass transition temperatures of the polymers are quite high (175-310 °C), characteristic of polyimides. The decomposition temperatures for 10% weight loss fall in the range of 280-575 °C in nitrogen. Activation energies of pyrolysis for each of the polymers calculated from Horowitz and Metzger's method are also high (52.54-95.28 kJ mol−1). The inherent viscosities of the polyimides at a concentration of 0.5 g/dl in DMF range from 0.94 to 1.93 dl/g.  相似文献   

6.
A new triphenylamine-containing aromatic diamine monomer, 4-[4-(1-adamantyl)phenoxy]-4′,4″-diaminotriphenylamine, was synthesized from cesium fluoride-mediated N,N-diarylation of 4-(1-adamantyl)-4′-aminodiphenyl ether with 4-fluoronitrobenzene and subsequent reduction of the resultant dinitro compound. Novel electroactive aromatic polyamides and polyimides with adamantylphenoxy-substituted triphenylamine moieties were prepared from the newly synthesized diamine monomer with aromatic dicarboxylic acids and tetracarboxylic dianhydrides, respectively. All the resulting polymers were amorphous and most of them were readily soluble in polar solvents such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc) and could be solution-cast into transparent and strong films with good mechanical properties. These polymers exhibited glass-transition temperatures between 254 and 310 °C, and they were fairly stable up to a temperature above 450 °C for the polyamides and above 500 °C for the polyimides. These polymers exhibited strong UV-vis absorption maxima at 293-346 nm in solution, and the photoluminescence spectra of polyamides showed maximum bands around 408-452 nm in the blue region. Cyclic voltammograms of the polyamide and polyimide films on an indium-tin oxide (ITO)-coated glass substrate exhibited one pair of reversible redox couples at half-wave oxidation potentials (E1/2) around 0.83-0.86 V and 1.12-1.13 V, respectively, versus Ag/AgCl in an acetonitrile solution. All the polymer films revealed good electrochemical and electrochromic stability by repeatedly switching electrode voltages between 0.0 V and 1.1-1.4 V, with coloration change from the pale yellowish neutral state to the green or blue oxidized state.  相似文献   

7.
A novel aromatic diamine 4′-(tert-butyldimethylsiloxy)biphenyl-4-yl 3,5-diaminobenzoate (DPA) was synthesized through three steps including monoesterification, silylation and hydrogenation. DPA with different ratios was copolymerized with 4,4′-diaminodiphenyl ether (ODA) and 3,3′,4,4′-biphenyl dianhydride (BPDA) to give poly(amic acid)s which were converted into polyimides (PIs) by thermal imidization. The effect of side-chain content on the thermal stability, optical transparency and surface energies was investigated by DSC, TGA, UV-vis spectra and contact angle measurement. With the content of side-chains increasing, the PIs revealed lower thermal stability, higher optical transparency and lower surface energies. The pretilt angles of 4-pentyl-4′-cyanobiphenyl (5CB) on the PI films were measured by a crystal rotation method. For the same rubbing strength, the pretilt angles increased with the increasing of the content of side-chains. When the content of side-chains rose from 5% to 20%, the pretilt angles increased from 2.8° to 15.0° under 28.5 mm of rubbing strength. When the content of side-chains increased to 70%, 80%, 90%, and 100%, the pretilt angles was 75.0°, 82.9°, 87.0°, and 87.7°, respectively, under 28.5 mm rubbing strength.  相似文献   

8.
The reaction of 4-bromo-1,3-diphenyl-2-buten-1-one with thiourea or N,N′-diphenylthiourea gives 2-(2-amino-4-phenyl-4,5-dihydro-1,3-thiazol-4-yl)-and 2-[3,4-diphenyl-2-(phenylimino)-1,3-thiazolidin-4-yl]-1-phenyl-1-ethanone — the products of nucleophilic substitution of the halogen atom and Michael addition at position 3 of the 2-buten-1-one system. A similar reaction with thiosemicarbazide and 1-phenylthiosemicarbazide gives the 4-(2-oxo-2-phenylethyl)-4-phenyl-and 4-(2-oxo-2-phenylethyl)-3,4-diphenyl-1,3-thiazolidin-2-one hydrobromides respectively. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 103–110, January, 2008.  相似文献   

9.
A new aromatic unsymmetrical diamine monomer, 1,4-(2′,4″-diaminodiphenoxy)benzene (OAPB), was successfully synthesized in three steps using hydroquinone as starting material and polymerized with various aromatic tetracarboxylic acid dianhydrides, including 4,4′-oxydiphthalic anhydride (ODPA), 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 2,2′-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride (6FDA) and pyromellitic dianhydride (PMDA) via the conventional two-step thermal or chemical imidization method to produce a series of the unsymmetrical aromatic polyimides. The polyimides were characterized by solubility tests, viscosity measurements, IR, 1H NMR, and 13C NMR spectroscopy, X-ray diffraction studies, and thermogravimetric analysis. The polyimides obtained had inherent viscosities ranged of 0.38-0.58 dL/g, and were easily dissolved in common organic solvents. The resulting strong and flexible PI films exhibited excellent thermal stability with the decomposition temperature (at 5% weight loss) of above 505 °C and the glass transition temperature in the range of 230-299 °C. Moreover, the polymer films showed outstanding mechanical properties with the tensile strengths of 41.4-108.5 MPa, elongation at breaks of 5-9% and initial moduli of 1.15-1.68 GPa.  相似文献   

10.
A novel pyridine-containing aromatic diamine monomer, 4-(4-trifluoromethylphenyl)-2,6-bis[4-(4-aminophenoxy)phenyl]pyridine (FAPP), was synthesized via the modified Chichibabin pyridine synthesis of 4-(4-nitrophenoxy)-acetophenone with 4-trifluoromethyl-benzaldehyde, followed by a catalytic reduction. A series of fluorinated pyridine-bridged aromatic poly(ether-imide)s were prepared from the resulting diamine monomer with various aromatic dianhydrides via a conventional two-step process. The resulting polyimides exhibited good solubility in aprotic amide solvents and m-cresol, such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and m-cresol, etc., which possessed the inherent viscosities of 0.76-0.91 dL/g. Strong and flexible poly(ether-imide) films were obtained, which showed excellent thermal properties with the glass transition temperatures of 268-353 °C, the temperature at 5% weight loss of 547-595 °C, and the residue at 700 °C of 65-74% in nitrogen, good mechanical properties with the tensile strengths of 87.6-104.2 MPa and elongations at breakage of 8.9-12.6%, and good optical transparency with the cut-off wavelengths of 357-380 nm, as well as low dielectric constants in the range of 2.49-3.04 at 1 MHz and low water uptake 0.43-0.69%. Furthermore, the resulted polyimides derived from FAPP were compared with non-fluorinated analogous polyimides and fluorinated analogous polyimides with trifluoromethyl groups in different positions, and the effects of substituents were also investigated and discussed.  相似文献   

11.
Adenine (9H-purin-6-amine) adds readily to available α,β-acetylenic γ-hydroxy nitriles under mild conditions (molar ratio 1:1, K2CO3, DMF, rt, 10 min) to afford chemo-, regio- and stereospecifically (Z)-3-(6-amino-9H-purin-9-yl)-4-hydroxy-4-alkyl-2-alkenenitriles, novel functionalized acyclic nucleoside analogues (95-98% yield). Under similar conditions (K2CO3, DMF, rt, 1 h), 8-azaadenine (3H-[1,2,3]triazolo[4,5-d]pyrimidin-7-amine) reacts with 4-hydroxy-4-methyl-2-pentynenitrile nonselectively at the 7-, 8- and 9-positions to give the corresponding adducts in a 1:10.5:9 ratio, the total yield being 81%. Chemo-, regio- and stereospecific addition of 8-azaadenine to the above α,β-acetylenic γ-hydroxy nitriles leading to (Z)-3-(7-amino-2H-[1,2,3]triazolo[4,5-d]pyrimidin-2-yl)-4-hydroxy-4-alkyl-2-alkenenitriles in 44-90% yield is attained when the reaction is carried out without solvent in the presence of Et3N (30 mol %), the molar ratio of 8-azaadenine:α,β-acetylenic nitriles being 1:2.0 (rt, 12-38 h).  相似文献   

12.
A new kind of pyridine-bridged aromatic dianhydride monomer, 4-phenyl-2,6-bis[4-(3,4-dicarboxyphenoxy)phenyl]-pyridine dianhydride (PPDA), was successfully synthesized by modified Chichibabin reaction of benzaldehyde and substituted acetophenone, 4-(3,4-dicyanophenoxy)-acetophenone (DCAP), followed by acidic hydrolysis of the intermediate tetranitrile and cyclodehydration of the resulting tetraacid. The pyridine-bridged aromatic dianhydride was employed to synthesized a series of new pyridine-containing polyimides by polycondensation with various aromatic diamines in N-methyl-2-pyrrolidone (NMP) via the conventional two-step method, i.e. ring-opening polycondensation forming the poly(amic acid)s and further thermal or chemical imidization forming polyimides. The inherent viscosities of the resulting polyimides were in the range of 0.49-0.63 dL/g, and most of them were soluble in aprotic amide solvents and cresols, such as N,N-dimethylacetamide (DMAc), NMP, and m-cresol, etc. Meanwhile, strong and flexible polyimide films were obtained, which have good thermal stability with the glass transition temperatures (Tg) of 223-256 °C, the temperature at 5% weight loss of 523-569 °C, and the residue at 700 °C of 52.1-62.7% in nitrogen, as well as have outstanding mechanical properties with the tensile strengths of 70.7-97.6 MPa and elongations at breakage of 7.9-9.7%. Wide-angle X-ray diffraction measurements revealed that these polyimides were predominantly amorphous.  相似文献   

13.
A new kind of pyridine-containing aromatic diamine monomer, 4-phenyl-2,6-bis[3-(4′-amino-2′-trifluoromethyl-phenoxy) phenyl] pyridine (m-PAFP), was successfully synthesized by a modified Chichibabin reaction of 3-(4′-nitro-2′-trifluoro-methyl-phenoxy)-acetophenone with benzaldehyde, followed by a catalytic reduction. A series of fluorinated pyridine-bridged aromatic poly(ether-imide)s were prepared from the resulting diamine monomer with various aromatic dianhydrides via a conventional two-step thermal or chemical imidization method. The inherent viscosities values of these polyimides were in the range of 0.56-1.02 dL/g, and they could be cast and thermally converted into transparent, flexible, and tough polyimide films. The polyimides displayed higher solubility in polar solvents such as NMP, DMSO and m-cresol. The polyimides had good thermal stability, with the glass transition temperatures (Tg) of 187-211 °C, the temperatures at 5% weight loss of 511-532 °C, and the residue at 800 °C in air was higher than 50%. These films also had dielectric constants of 2.64-2.74 at 10 MHz and low water uptake 0.53-0.66%. Wide-angle X-ray diffraction measurements revealed that these polyimides were predominantly amorphous. Moreover, the polymer films of these novel polyimides showed outstanding mechanical properties with the tensile strengths of 90.1-96.6 MPa, elongations at breakage of 8.9-10.7% and tensile modulus of 1.65-1.98 GPa.  相似文献   

14.
Acetylacetone and malononitrile were coupled with diazotized arylamines to give arylazoacetyl-acetones and arylazomalononitriles. When refluxed with 3-hydrazino-4,5-diphenyl-1H-pyrazolo-[3,4-c]pyridazine in the presence of ethanol/HCl, they yielded the corresponding 3-[4-(arylazo)-3,5-di-methylpyrazol-1-yl]- and 3-[3,5-diamino-4-(arylazo)pyrazol-1-yl]-4,5-diphenyl-1H-pyrazolo[3,4-c]pyri-dazine dyes. The dyes were applied to polyester and polyamide fabrics, and their spectral and fastness properties were measured.  相似文献   

15.
A novel aromatic diamine containing bulky lateral phenyl unit and fluorine groups ortho-substituted to the amino groups in the structure, α,α-bis(4-amino-3,5-difluorophenyl)phenylmethane (4FMA) was synthesized and characterized. 4FMA was polymerized with four aromatic dianhydrides to afford a series of polyimides (PIs) via a one-step high-temperature polycondensation procedure. All the PIs were amorphous and showed good solubility not only in polar aprotic solvents, but in many common solvents, such as cyclopentanone and tetrahydrofuran. The soluble polymers formed flexible, tough and transparent films. The films had a tensile strength, elongation at break, and tensile modulus in the ranges 85-107 MPa, 4-7%, 1.7-2.8 GPa, respectively. The polyimides also exhibited high-Tg (292-338 °C), good thermal stability, good dielectric strength, low dielectric constants, and low water uptakes due to the introduction of the polyfluorinated substituents in the polymer backbone. As expected, the PI films showed good transparency in the UV-Vis light region with cutoff wavelength as low as 318 nm and transmittance higher than 60% at 450 nm. PI-4 derived from 4FMA and fluorinated dianhydride 6FDA exhibited low light-absorption in the near-infrared region, especially at the optocommunication wavelength of 1310 nm and 1550 nm. The remarkable combined properties indicate their potential applications in microelectronic and optoelectronic fabrications.  相似文献   

16.
A series of processable fluorinated poly(ether imide)s (PIs) were synthesized by reacting a diamine monomer, 1,4-bis-[{2′-trifluromethyl 4′-(4″-aminophenyl)phenoxy}] benzene (HQA) with six different aromatic dianhydrides e.g., BPADA, 6FDA, ODPA, BPDA, BTDA and PMDA. The polyimides showed reasonably high glass-transition temperature (Tg up to 280 °C) and high thermal stability (Td,10 up to 558 °C). The membranes of these polymers showed tensile strength up to 107 MPa with elongation at break up to 15%, low water absorption (0.61–1.29%), low dielectric constant (2.10–3.13 at 1 MHz) and high optical transparency (λcut-off up to 466 nm). The PI membrane prepared from 6FDA exhibited high permeability and permselectivity for O2/N2 (PO2 = 11.8 and PO2/PN2 = 9.44) gas pair which eventually surpassed the present upper boundary limit drawn by L.M. Robeson.  相似文献   

17.
A series of organo-soluble polyimides were prepared from a novel fluorinated diamine monomer, 4-phenyl-2,6-bis[4-(4′-amino-2′-trifluoromethylphenoxy)phenyl]pyridine and various commercial aromatic dianhydrides. These polyimides had good solubility in common organic solvents. The obtained strong and flexible PI films exhibited excellent thermal stability with the decomposition temperature (at 5% weight loss) of above 561 °C and the glass transition temperature in the range of 258-312 °C. Moreover, the polymer films showed good electrical insulating property, low dielectric constant and low water uptake due to the introduction of fluorinated substitutes in the polymer backbone. The remarkable combined features ensure these polymers to be ideal candidate materials for advanced microelectronic industry and other related applications.  相似文献   

18.
A novel sulfonated diamine, 1,2-dihydro-2-(3-sulfonic-4-aminophenyl)-4-[4-(3-sulfonic-4-aminophenoxy)-phenyl]-phthalazin-1-one(S-DHPZDA), was successfully synthesized and two series of six-membered sulfonated polyimides (SPIs) were prepared from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), S-DHPZDA, and nonsulfonated diamines DHPZDA or 4,4′-diaminodiphenyl ether (ODA). The chemical structure of the S-DHPZDA and the SPIs were characterized by 1H NMR and FT-IR. Tough, brownish and transparent membranes were cast from SPIs’ solution in NMP. The water uptake, swelling ratio, chemical and thermal stability, hydrolytic and oxidative stability as well as proton conductivity of these new polymers were investigated systematically. Compared with Nafions, the obtained SPI membranes have onset decomposed temperatures of these two series SPIs were above 318 °C and decomposed temperature of main chain were 565 °C and excellent dimension stabilities on similar IECs. Introduction of phthalazinone moieties had improved the copolyimides’ solubility in polar aprotic organic solvents like m-cresol, NMP, DMSO, DMF etc. The SPIs had high proton conductivity (σ) in the order of magnitude of 10−3 to 10−2 S cm−1 depending on the degree of sulfonation (DS) of the polymers.  相似文献   

19.
Polyimides with a low dielectric constant and excellent adhesion were prepared from a diamine containing phosphine oxide and fluorine groups, bis(3,3′-aminophenyl-2,3,5,6-tetrafluoro-4-trifluoromethyl phenyl phosphine oxide (mDA7FPPO), and rigid-rod type dianhydride containing fluorine groups, such as 3,6-di(3′,5′-bis(trifluoromethyl)-phenyl)pyromellitic dianhydride (12FPMDA). The polyimides were synthesized via the known two-step process, preparation of poly(amic-acid) followed by solution imidization, and characterized by FT-IR, NMR, DSC, TGA and TMA. In addition, their solubility, intrinsic viscosity, dielectric constant and adhesive property were also evaluated. For comparison, 3,6-di(4′-trifluoromethylphenyl) pyromellitic dianhydride (6FPMDA) and 3,6-diphenylpyromellitic dianhydride (DPPMDA) were also utilized. The prepared polyimides exhibited high Tg (276-314 °C), excellent thermal stability (>500 °C in air), good adhesive property (104.7-126.3 g/mm), good solubility, and very low dielectric constant (2.34-2.89).  相似文献   

20.
In research towards high performance polymeric materials, two novel series of bismaleimide (BMI) resins based on 1,3,4-oxadiazole-containing monomers have been designed and prepared by the copolymeriziation reaction of 5-tert-butyl-1,3-bis[5-(4-maleimidophenyl)-1,3,4-oxadiazole-2-yl]benzene (Buoxd) or 4,4′-bis[5-(4-maleimidophenyl)-1,3,4-oxadiazole-2-yl]diphenyldimethylsilane (Sioxd) and 4,4′-bismaleimidodiphenylmethane (BMDM) in different feed ratios. The structures, thermal and dynamic mechanical properties of all the resulting BMI resins were carefully characterized by a combination of methods such as IR, DSC, TGA and DMA. Investigation of the copolymerization process has shown that with an increase of the weight ratio of Buoxd or Sioxd, melting transition temperature (Tm) of BMI monomer mixtures decreased and the exothermic polymerization temperature (Tp) increased. For all BMI monomer mixtures, a rapid polymerization process was observed in the early stage, as shown by the IR investigations. No glass transition was observed for the resulting BMI resins in the temperature range from 50 °C to 350 °C, indicating the formation of highly cross-linking networks. The initial thermal decomposition temperatures (Td) of the BMI resins were in the range of 477-493 °C in nitrogen and 442-463 °C in the air. Dynamic mechanical analysis (DMA) of the composites made of the BMI resins and glass cloth showed high bending modulus not only at room temperature (E′, 1.9-5.3 GPa) but also at high temperature, e.g., 400 °C (E′, 1.7-4.4 GPa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号