首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A facile catalytic chain transfer polymerization (CCTP) technique has been developed to synthesize covalently linked CdS nanocrystal-polymer hybrids with good optical properties. The in situ polymerization of methyl methacrylate (MMA) on the surface of modified CdS nanocrystals (NCs) with diameter of 5 nm via CCTP process yielded CdS-polymethylmethacrylate (PMMA) hybrid nanocomposites; while the incorporation of hydroxyl-coated CdS NCs into poly(methacryloxypropyltrimethoxysilane) (PMPS)-co-PMMA matrices prepared by CCTP afforded CdS-PMPS-co-PMMA hybrid nanocomposites, which were further cross-linked by free radical polymerization to form CdS NC-polymer network. The spectroscopic studies indicate that as-prepared CdS NC-polymer hybrids show good photoluminescence (PL) and the NC-polymer network exhibits highly enhanced PL property with respect to that before cross-linking. Also described are the probable mechanism for the catalytic chain transfer polymerization on the surface of modified nanocrystal and the measurement of chain transfer constants.  相似文献   

2.
以钴Ⅱ肟氟化硼络合物(CoBF)为催化剂,2,2′-偶氮二异丁腈(AIBN)为引发剂,实现了甲基丙烯酸甲酯(MMA)与γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)在60℃甲苯体系中的催化链转移聚合(catalytic chaintransfer polymerization,CCTP),制备出末端含有双键的共聚物.利用核磁共振证明了其末端双键的存在,并通过热重分析证明CCTP产物与自由基聚合产物的结构区别.用凝胶渗透色谱(GPC)对7种单体组成下不同催化剂CoBF用量的聚合产物进行分子量表征,结果表明以催化链转移聚合合成的共聚物具有分子量低及分子量分布较窄,且聚合物的分子量随着催化剂CoBF的增加呈明显下降趋势.又分别采用了基于DPn(数均聚合度)、DPw(重均聚合度)的Mayo方程和基于ΛP、ΛH的链长分布方程计算出催化剂的表观链转移常数,发现基于DPw的Mayo方程和基于ΛP的链长分布方程的计算结果最为接近.并通过对共聚体系中不同单体组成的研究发现,催化剂表观链转移常数随着单体组成中MPS的增加而增加.  相似文献   

3.
温敏两亲性接枝物PAM-g-PNIPAm的合成及表征   总被引:1,自引:0,他引:1  
以巯基乙胺为分子量调节剂,以丙烯酰氯作为链端转化剂合成了不同分子量的端丙烯酰胺基聚(N-异丙基丙烯酰胺)(PNIPAm)大分子单体;与丙烯酰胺共聚合,合成了以PNIPAm为侧链的接枝聚丙烯酰胺.用FTIR和1HNMR方法表征了接枝聚合物与大分子单体的组成.该接枝聚合物在水溶液中具有热缔合特性及明显的温敏增稠性,水溶液的粘度在32~50℃之间随温度增加而增加.  相似文献   

4.
Heteroarm H‐shaped terpolymers, (polystyrene)(poly(methyl methacrylate))‐ poly(tert‐butyl acrylate)‐(polystyrene)(poly(methyl methacrylate)), (PS)(PMMA)‐PtBA‐(PMMA)(PS), and, (PS)(PMMA)‐poly(ethylene glycol)(PEG)‐(PMMA)(PS), through click reaction strategy between PS‐PMMA copolymer (as side chains) with an alkyne functional group at the junction point and diazide end‐functionalized PtBA or PEG (as a main chain). PS‐PMMA with alkyne functional group was prepared by sequential living radical polymerizations such as the nitroxide mediated (NMP) and the metal mediated‐living radical polymerization (ATRP) routes. The obtained H‐shaped polymers were characterized by using 1H‐NMR, GPC, DSC, and AFM measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1055–1065, 2007  相似文献   

5.
The synthesis of poly[(oligoethylene glycol) methyl ether acrylate] [poly(OEGA)] brushes was achieved via reversible addition‐fragmentation chain transfer (RAFT) polymerization and used to selectively immobilize streptavidin proteins. Initially, gold surfaces were modified with a trithiocarbonate‐based RAFT chain transfer agent (CTA) by using an ester reaction involving a gold substrate modified with 11‐mercapto‐1‐undecanol and bis(2‐butyric acid)trithiocarbonate. poly(OEGA) brushes were then prepared via RAFT‐mediated polymerization from the surface‐immobilized CTA. The immobilization of CTA on the gold surface and the subsequent polymer formation were followed by ellipsometry, X‐ray photoelectron spectroscopy, grazing angle‐Fourier transform infrared spectroscopy, atomic force microscopy, and water contact‐angle measurements. RAFT‐mediated polymerization method gave CTA groups to grafted poly(OEGA) termini, which can be converted to various biofunctional groups. The terminal carboxylic acid groups of poly(OEGA) chains were functionalized with amine‐functionalized biotin units to provide selective attachment points for streptavidin proteins. Fluorescence microscopy measurements confirmed the successful immobilization of streptavidin molecules on the polymer brushes. It is demonstrated that this fabrication method may be successfully applied for specific protein recognition and immobilization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
This article presents a new strategy for synthesizing a series of well‐defined macromonomers. Bromine‐terminated polystyrene and poly(t‐butyl acrylate) with predetermined molecular weights and narrow distributions were prepared through the atom transfer radical polymerization of styrene and t‐butyl acrylate initiated with ethyl 2‐bromoisobutyrate. Then, azido‐terminated polymers were obtained through the bromine substitution reaction with sodium azide. Catalyzed by CuBr/N,N,N′,N″,N″‐pentamethyldiethylenetriamine, the azido end group reacted with propargyl methacrylate via a 1,3‐dipolar cycloaddition reaction, and ω‐methacryloyl‐functionalized macromonomers were thus obtained. The end‐group transformation yields were rather high, as characterized by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra and 1H NMR analysis. By this effective and facile approach, some novel macromonomers that otherwise are difficult to achieve, such as poly(ethylene oxide)‐block‐polystyrene, were easily prepared. Radical homopolymerizations of these macromonomers were performed, and a series of comb polymers were prepared. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6103–6113, 2006  相似文献   

7.
The successful catalytic chain‐transfer synthesis of 1,1,2,2‐tetrahydroperfluoroalkyl methacrylate macromonomers with [bis(aqua)bis(difluoroboryl)dimethylglyoximato]cobalt(II) as a catalyst is reported. Fluoroalkyl methacrylate macromonomers were synthesized in acetone with 2,2′‐azobisisobutyronitrile as the initiator. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4136–4141, 2006  相似文献   

8.
可聚合的光引发转移终止剂合成接枝共聚物   总被引:4,自引:0,他引:4  
采用一种可聚合的光引发转移终止剂 ,2 N ,N 二乙基二硫代氨基甲酰氧基乙酸 β 甲基丙烯酰氧基乙酯 (MAEDCA) ,通过两种途径制备了含有聚甲基丙烯酸甲酯 (PMMA)和聚苯乙烯 (PSt)链段的接枝共聚物 .其一是将MAEDCA作为引发剂 ,在紫外光照射下引发MMA聚合 ,得到大分子单体 ,通过大分子单体与St的共聚合得到 .考察了所用大分子单体的分子量和浓度对共聚合的影响 .其二是将MAEDCA作为单体与MMA共聚得到侧链上含有N ,N 二乙基二硫代氨基甲酰氧基 (DC)基团的无规共聚物 ,P(MMA co MAEDCA) .在紫外光照射下 ,P(MMA co MAEDCA)作为大分子引发剂引发St聚合 ,得到P(MMA co MAEDCA) g PSt的共聚物 ,研究了接枝共聚合过程的活性自由基聚合特征  相似文献   

9.
In this article, the synthesis and the functionalization of well‐defined, narrow polydispersity (polydispersity index < 1.2) star polymers via reversible addition‐fragmentation chain transfer polymerization is detailed. In this arm first approach, the initial synthesis of a poly(pentafluorophenyl acrylate) polymer, and subsequent, cross‐linking using bis‐acrylamide to prepare star polymers, has been achieved by reversible addition fragmentation chain transfer polymerization. These star polymers were functionalized using a variety of amino functional groups via nucleophilic substitution of pentafluorophenyl activated ester to yield star polymers with predesigned chemical functionality. This approach has allowed the synthesis of star glycopolymer using a very simple approach. Finally, the core of the stars was modified via thiol‐ene click chemistry reaction using fluorescein‐o‐acrylate and DyLigh 633 Maleimide. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
A combination of ring opening metathesis polymerization (ROMP) and click chemistry approach is first time utilized in the preparation of 3‐miktoarm star terpolymer. The bromide end‐functionality of monotelechelic poly(N‐butyl oxanorbornene imide) (PNBONI‐Br) is first transformed to azide and then reacted with polystyrene‐b‐poly(methyl methacrylate) copolymer with alkyne at the junction point (PS‐b‐PMMA‐alkyne) via click chemistry strategy, producing PS‐PMMA‐PNBONI 3‐miktoarm star terpolymer. PNBONI‐Br was prepared by ROMP of N‐butyl oxanorbornene imide (NBONI) 1 in the presence of (Z)‐but‐2‐ene‐1,4‐diyl bis(2‐bromopropanoate) 2 as terminating agent. PS‐b‐PMMA‐alkyne copolymer was prepared successively via nitroxide‐mediated radical polymerization (NMP) of St and atom transfer radical polymerization (ATRP) of MMA. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 497–504, 2009  相似文献   

11.
A key problem with nanomaterials is the difficulty of controlling the dispersion of nanoparticles inside an organic medium. To overcome this problem, functionalization of the nanoparticle surface is required. Poly(methyl methacrylate) (PMMA) brushes were grown on the surface of iron oxide magnetic nanoparticles with atom transfer radical polymerization and a grafting‐from approach. Modified magnetic nanoparticles with a graft density of 0.1 PMMA chains/nm2 were obtained. Cu(II), used as a deactivating complex, allowed good control of the polymerization along with a narrow polydispersity of the polymer chains. The functionalized magnetic nanoparticles were characterized with Fourier transform infrared spectroscopy, thermogravimetric analysis, gel permeation chromatography, and atomic force microscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 925–932, 2007  相似文献   

12.
Reversible addition–fragmentation chain transfer (RAFT) polymerization has emerged as one of the important living radical polymerization techniques. Herein, we report the polymerization of di(ethylene glycol) 2‐ethylhexyl ether acrylate (DEHEA), a commercially‐available monomer consisting of an amphiphilic side chain, via RAFT by using bis(2‐propionic acid) trithiocarbonate as the chain transfer agent (CTA) and AIBN as the radical initiator, at 70 °C. The kinetics of DEHEA polymerization was also evaluated. Synthesis of well‐defined ABA triblock copolymers consisting of poly(tert‐butyl acrylate) (PtBA) or poly(octadecyl acrylate) (PODA) middle blocks were prepared from a PDEHEA macroCTA. By starting from a PtBA macroCTA, a BAB triblock copolymer with PDEHEA as the middle block was also readily prepared. These amphiphilic block copolymers with PDEHEA segments bearing unique amphiphilic side chains could potentially be used as the precursor components for construction of self‐assembled nanostructures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5420–5430, 2007  相似文献   

13.
Poly(1,1‐bis(ethoxycarbonyl)‐2‐vinyl cyclopropane (ECVP)‐graft‐dimethyl siloxane) copolymers were prepared using a macromonomer approach. Poly(dimethyl siloxane) (PDMS) macromonomers were prepared by living anionic polymerization of cyclosiloxanes followed by sequential chain‐end capping with allyl chloroformate. These macromonomers were then copolymerized with ECVP. MALDI‐ToF mass spectrometry and 1H NMR spectroscopy were used to show that the macromonomers had approximately 80% of the end groups functionalized with allyl carbonate groups. Gradient polymer elution chromatography showed that high yields of the graft copolymers were obtained, along with only small fractions of the PECVP and PDMS homopolymers. Differential scanning calorimetry showed that the low glass transition temperature (Tg) of the PDMS component could be maintained in the graft copolymers. However, the Tg was a function of polymer composition and the polymers produced had Tgs that ranged from ?50 to ?120 °C. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

14.
Silica nanoparticles of various sizes have been incorporated by melt compounding in a poly(methyl methacrylate) (PMMA) matrix to enhance its thermal and mechanical properties. In order to improve nanoparticles dispersion, PMMA grafted particles have been prepared by atom transfer radical polymerization (ATRP) from well-defined silica nanoparticles. This strategy was expected to ensure compatibility between both components of the PMMA nanocomposites. TEM analysis have been performed to evaluate the nanosilica dispersion whereas modified and non-modified silica/PMMA nanocomposites thermal stability and mechanical properties have been investigated by both thermogravimetric and dynamical mechanical analysis.  相似文献   

15.
用Grubbs第二代催化剂引发降冰片烯类单体(NBEDE)和链转移剂在离子液体[bmim][BF4]中的开环易位聚合(ROMP)反应,反应体系保持均相,无聚合物析出,得到两端为叔溴的遥爪型官能化聚合物(Br-PNBEDE-Br).以Br-PNBEDE-Br作为大分子引发剂,在离子液体介质中引发甲基丙烯酸2-(二甲氨基)乙酯(DMAEMA)的原子转移自由基聚合(ATRP),制得分子量分布较窄的两亲性三嵌段共聚物(PDMAEMA-PNBEDE-PDMAEMA).利用动态激光光散射(DLS),原子力显微镜(AFM),透射电镜(TEM)等技术,考察嵌段共聚物在选择性溶剂/共溶剂(H2O/THF)中的胶束行为,以及溶液pH值对胶束的影响.结果表明,TEM观察到胶束为球形,由于TEM和AFM是在干态下测得胶束的粒径,而DLS是在溶液中测定胶束的流体力学直径,所以TEM和AFM得到的胶束粒径小于DLS的结果.不同pH值对胶束尺寸大小有明显的影响,胶束微粒随着pH值的增大而增大.  相似文献   

16.
Structurally well‐defined end functionalized isotactic polypropylene (iPP) is prepared by conducting a selective chain transfer reaction during the isospecific polymerization of propylene in the presence of norbornadiene (NBD) and hydrogen using rac‐Me2Si(2‐Me‐4‐Ph‐Ind)2 ZrCl2/MAO as the catalyst. The production of NBD‐capped iPP involves a unique consecutive chain transfer reaction, first to NBD and then to hydrogen, for situating the incorporated NBD at the iPP chain end. The NBD end group of NBD‐capped iPP can be converted into other reactive functional group through functional group transformation reactions. The resulting functional group end‐capped iPP can be used for the construction of stereoregular block copolymers (e.g., iPP‐b‐PMMA and iPP‐b‐PS) through postpolymeriztion reactions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
The fabrication of novel hydrophobic, superhydrophobic, and oleophobic surfaces on glass using nanosilica particles modified with polymer brushes prepared via surface initiated Cu(0)‐mediated reversible‐deactivation radical polymerization was demonstrated. Monomers including n‐butyl acrylate, 2,2,2‐trifluoroethyl methacrylate, and 1,1,1,3,3,3‐hexafluoroisopropyl acrylate were used to synthesize a series of nanosilica–polymer organic/inorganic hybrid materials. Products were analyzed using infrared spectroscopy, thermogravimetric analysis, scanning and transmission electron microscopy. The coated nanosilica showed core–shell structures that contains polymer brushes up to 67 wt %. The application of these particles for modifying surface wettability was examined by covalently attaching them to glass via a recently developed one‐pot “grafting to” methodology using “thio‐bromo click” chemistry. Atomic force microscopy topographic images show up to 25 times increase in roughness of the coated glass compared to blank glass sample. Contact angle measurements showed that nanosilica coated with PBA and PTFEM produced hydrophobic glass surfaces, while a superhydrophobic and oleophobic surface was generated using nanosilica functionalized with PHFIPA. This novel methodology can produce superhydrophobic and oleophobic surfaces in an easy and fast way without the need for tedious and time‐consuming processes, such as layer‐by‐layer deposition, high temperature calcination, and fluorinated oil infusion. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018  相似文献   

18.
Microspheres consisting of a poly(methyl methacrylate) (PMMA) shell wrapping the conductive polyaniline (PANI) particle as a core were prepared by an in-situ suspension polymerization method and then adopted as an electrorheological (ER) material. The polymerization reaction and encapsulation were confirmed by Fourier transform infrared spectrum analysis. The rod-like PANI particles were synthesized via an emulsion polymerization protocol and observed by transmission electron microscopy. In addition, a spherical shape of encapsulated PANI/PMMA (core/shell) microspheres was observed by scanning electron microscopy. The thermal stability of PANI/PMMA particles was examined by use of thermogravimetric analysis. The PANI/PMMA particle-based suspension in silicone oil exhibited typical ER behavior. The conductivity of PANI/PMMA particles was much lower than that of the rod-like PANI.  相似文献   

19.
通过开环聚合(ROP)和原子转移自由基聚合(ATRP)制备了一类新型的两亲性嵌段共聚物——六臂星形聚(ε-已内酯)-b-聚甲基丙烯酸(2-羟乙酯)(6sPCL-b-PHEMA).6sPCL-b-PHEMA通过三步反应合成:(1)双季戊四醇开环聚合ε-己内酯的合成6sPCL;(2)以2-溴异丁基酰溴封端星形聚合物制备大分...  相似文献   

20.
A facile synthetic pathway to miktoarm star copolymers with multiple arms has been developed by combining reversible addition–fragmentation chain transfer (RAFT) arm‐first technique and aldehyde–aminooxy “click” coupling reaction. Star polystyrene (PS) with aldehyde functionalized core was initially prepared by RAFT arm‐first technique via crosslinking of the preformed linear macro‐RAFT agents using a newly designed aldehyde‐containing divinyl compound 6,6′‐(ethane‐1,2‐diylbis(oxy))bis(3‐vinylbenzaldehyde) (EVBA). It was then used as a multifunctional coupling agent for the subsequent formation of the second generation poly(ethylene glycol) (PEG) arms via the click coupling reaction between its aldehyde groups and aminooxy‐terminated PEGs. The possible formation of PS‐PEG miktoarm star copolymer with Janus‐like segregated structure in cyclohexanone was also investigated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3323–3330, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号