首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从注射制品形态控制和结构表征的角度探讨高分子材料加工-形态-性能之间的关系.研究中采用动态保压成型方法来制备注射样品,在注射成型过程中引入剪切应力场的作用,制得的样品表现出明显的多层次结构,从外向里分别为皮层、剪切层、芯层,表现出不同的相形态、结晶形貌以及取向行为.研究发现,剪切应力对聚烯烃的形态发展和结构变化具有重要影响.在剪切应力的作用下,聚烯烃共混物中分散相会发生变形、取向,从而导致共混物的相转变点发生移动;结晶形态从球晶转变为shish-kebab结构;聚烯烃共混物在高剪切应力下相容,低剪切下发生相分离;HDPE/PP共混物的注射制品中出现附生结晶等现象.  相似文献   

2.
在常规注射过程中 ,难以获得超高性能的共混体系注射制件 ,已有的研究表明 ,采用高剪切注射 ,可以抬高共混体系的最低临界相容温度曲线 (LCST)的位置 ,增加相容性 .当熔体进入模具后 ,冷却的同时相容性下降 ,开始相分离 ,相分离程度发展到某一程度即可获得高性能的制件 .对于高密度聚乙烯 (HDPE)、聚丙烯 (PP)两组分均为结晶型聚合物的共混体系 ,由于其相形态与结晶形态相互制约、竞争 ,微相分离程度难以控制 ,因此对其液 液相形态与结晶过程的控制是获得共混物最终形态与性能的关键 .采用振动保压注射成型技术不仅对HDPE、PP各自力学性能有明显的自增强作用 ,而且对HDPE/PP共混体系的力学性能也有十分明显的改善 .DSC、WAXD、SEM结果表明共混体系拉伸强度的提高主要取决于试样中串晶数量和大分子链的定向程度 ,而冲击强度则主要取决于两组分微观的相分离程度 .研究结果表明 ,HDPE/PP含量为 92 / 8的试样拉伸强度为 97 1MPa,80 / 2 0试样的缺口冲击强度为 4 5 5kJ/m2 ,较静态试样分别提高 4 3倍和 9 5倍 .采用振动填充注射技术针对某一组分可以获得高强度、高韧性的共混制件 .  相似文献   

3.
in situ Fibril formation of polyamide-6(PA6)in isotropic polypropylene(iPP)was first fabricated using a slit die extrusion and hot stretching process.Then the prepared materials were subjected to injection molding in the temperature range higher than the melting temperature of iPP but lower than that of PA6.The obtained injection-molded samples were characterized via scanning electron microscopy(SEM),differential scanning calorimetry(DSC)and two-dimensional wide- angle X-ray scattering(2D-WAXS).Mechanical properties were also investigated.The SEM result shows that the optimum fibril formation could be only achieved in the range of 20 wt% to 30 wt% of PA6 content for the studied system.The fibril morphology changes along the sample thickness in the injection-molded bars.The fibril morphology in the skin layer was better than that in the core layer.2D-WAXS results showed that the orientation of PP decreased with the increase of PA6 content,which indicated that the orientation of PP was confined by PA6 fibrils.Combined consideration of mechanical properties and morphology indicates that only PP/PA6 composites with 20 wt% of PA6 content show better properties because of the better fibril morphology and PP chain orientation.  相似文献   

4.
剪切作用下PA1010/PP共混物的形态与性能研究   总被引:1,自引:1,他引:0  
通过动态保压注射成型方法制备了聚酰胺1010/聚丙烯(PA1010/PP)共混物,并研究了形态与性能的关系.力学性能测试结果表明在熔体冷却过程中施加剪切可以大大提高共混物的拉伸强度、拉伸模量和缺口冲击强度,当PP的质量分数为20%时,共混物的缺口冲击强度达到21.3kJ/m2,是静态样的3倍多,拉伸强度达到50.9MPa,是静态样的1.5倍.扫描电镜(SEM)结果表明在动态保压样的横断面可以观察到剪切诱导的形态,中间是芯层,围绕着芯层的是剪切层,最外面是皮层,相区尺寸显著减小、分散相分散更趋均匀,特别是PP的质量分数为20%时,相区尺寸从原来的约3.9μm降低到约1.4μm.动态保压样机械性能的提高归因于剪切作用下独特相形态的形成,分子链沿流动方向的取向是拉伸强度提高的主要原因,而剪切使分散相颗粒变小和剪切层中分子链的取向是冲击强度提高的主要原因.  相似文献   

5.
利用自行研制的低频振动注射实验装置探讨HDPE振动注射试样力学性能和微观形态之间的关系 .实验中对常规注射和振动注射成型的试样力学性能和微观形态进行了对比实验 .SEM实验结果显示 ,振动注射制件芯层的形态由常规注射的球晶转变为垂直于振动波传递方向排列的片晶结构 ,在剪切层中同时存在串晶或柱状堆砌的片晶结构 .频率的改变 (0 相似文献   

6.
傅强 《高分子科学》2003,(5):505-514
As a long-term project aimed at developing super polyolefin blends, in this paper we summarize our work on themechanical reinforcement and phase morphology of polyolefin blends achieved by dynamic packing injection molding(DPIM). The main feature of this technology is that the specimen is forced to move repeatedly in the model by two pistonsthat move reversibly with the same frequency during cooling, which results in preferential orientation of the dispersed phaseas well as the matrix. The typical morphology of samples obtained via DPIM is a shear-induced morphology with a core inthe center, an oriented zone surrounding the core and a skin layer in the cross-section areas. Shear-induced phase dissolutionat a higher shear rate but phase separation at low shear rates is evident from AFM examination of LLDPE/PP (50/50) blends.The super polyolefin blends having high modulus (1.9-2.2 GPa), high tensile strength (100-120 MPa) and high impactstrength (6 times as that of pure HDPE) have been prepared by controlling the phase separation, molecular orientation andcrystal morphology.  相似文献   

7.
Ternary blends of PLA/PBS/CSW with different weight fractions were prepared using a vane extruder. The mechanical properties, morphology, crystallization behavior and thermal stability of the blends were investigated. For the PLA/CSW blend, the tensile strength decreased, the flexural strength and modulus increased compared with pure PLA. For PBS, the addition of CSW had little influence on the mechanical properties. For the ternary blends PLA/PBS/CSW, the tensile strength, flexural strength and modulus decreased compared with pure PLA, while the elongation at break and the impact strength increased significantly. The brittle-ductile transition of the blends took place when the PBS weight fraction reaching 30 wt%. As a soft component in the blends, PBS was beneficial to improve the tensile ductility and the toughness of PLA. SEM measurements reveal that PLA/PBS/CSW blends were immiscible. When the weight fraction of PBS was 50 wt%, significant phase separation was observed, and CSW had preferential location in the PBS phase of the blend. DSC measurement and POM observation reveal that CSW had a heterogeneous nucleation effect on PLA and PBS matrix. The addition of PBS improved the crystallization of PLA and the thermal resistance of the PLA/PBS/CSW blends significantly.  相似文献   

8.
In this work blends of poly(ethylene-co-vinyl alcohol) (EVOH) with different ethylene contents (27, 32, 38 and 44 mol%) and poly(methyl methacrylate) (PMMA) were prepared by mechanical mixing in the melted state. The miscibility and melting behavior as a function of blend composition and the ethylene content in EVOH copolymers were investigated by means of differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The morphology of the cryofractured surfaces was examined by scanning electron microscopy (SEM). DSC and DMTA data show that EVOH/PMMA blends are immiscible, independent of EVOH and blend composition. The SEM analysis in agreement with DMTA analysis indicates that the morphology of phases depends on the blend composition, with phase inversion occurring as the concentration of one or other polymer component increases. However, the copolymer composition apparently does not affect the domain size distribution for blends containing 20 wt% of EVOH or 20 wt% of PMMA. A better phase adhesion is observed mainly for blends with 50 wt% of each polymer component.  相似文献   

9.
The effect of compatibility on phase morphology and orientation of isotactic polypropylene (iPP) blends under shear stress was investigated via dynamic packing injection molding (DPIM). The compatibility of iPP blended with other polymers, namely, atactic polypropylene (aPP), octane-ethylene copolymer (POE), ethylene-propylene-diene rubber (EPDM) and poly(ethylene-co-vinyl acetate) (EVA), have first been studied using dynamic mechanical analysis (DMA). These blends were subjected to DPIM, which relies on the application of shear stress fields to the melt/solid interfaces during the packing stage by means of hydraulically actuated pistons. The phase morphology, orientation and mechanical properties of the injection-molded samples were characterized by SEM, 2D WAXS and Instron. For incompatible iPP/EVA blends, a much elongated and deformed EVA particles and a higher degree of iPP chain orientation were observed under the effect of shear. However, for compatible iPP/aPP blends, a less deformed and elongated aPP particles and less oriented iPP chains were deduced. It can be concluded that the compatibility between the components decreases the deformation and orientation in the polymer blends. This is most likely due to the hindering effect, resulting from the molecular entanglement and interaction in the compatible system.  相似文献   

10.
In situ polymerized PS/EPDM blends were prepared by dissolving poly(ethylene-co-propylene-co-2-ethylidene-5-norbornene) (EPDM) in styrene monomer, followed by bulk polymerization at 60 °C and 80 °C . EPDM has excellent resistance to such factors as weather, ozone and oxidation, attributed to its non-conjugated diene component, and it could be a good alternative for substituting polybutadiene-based rubbers in PS toughening. The in situ polymerized blends were characterized by dynamic mechanical analysis, thermogravimetric analysis, gel permeation chromatography, and tensile and Izod impact resistance tests. The PS/EPDM blends are immiscible and present two phases, a dispersed elastomeric phase (EPDM) in a rigid PS matrix whose phase behavior is strongly affected by the polymerization temperature. Mechanical properties of the blends are influenced by the increase in the average size of EPDM domains with the increase in the polymerization temperature and EPDM content. The blends polymerized at 60 °C containing 5 wt% of EPDM presents an increase in the impact resistance of 80% and containing 17 wt% of EPDM presents an increase in the strain at break of 170% in comparison with the value of PS. The blend polymerized at 80 °C containing 17 wt% of EPDM presents an increase in the strain at break of 480% and in impact resistance of 140% in comparison with the value of PS.  相似文献   

11.
HDPE/PP共混物在振动剪切作用下的力学性能与形态控制   总被引:4,自引:0,他引:4  
采用高剪切引起的相容与振动剪切保压方式控制共混物的形态,结果表明,当共混体系中HDPE/PP为92/8时的试样拉伸强度为97.1MPa,而80/20试样的缺口冲击强度为45.5kJ/m2,较静态试样分别提高4.3倍和9.5倍.采用振动剪切注射技术可以针对某一组分获得高强度、高韧性的HDPE/PP共混制件.  相似文献   

12.
�˻�  ��ǿ 《高分子科学》2011,29(4):456-464
Thin wall samples of high density polyethylene (HDPE) were prepared via injection molding with different injection speeds ranging from 100 mm/s to 1200 mm/s. A significant decrease in the tensile strength and Young??s modulus was observed with increasing injection speed. In order to investigate the mechanism behind this decrease, the orientation, molecular weight, molecular weight distribution, melt flow rate, crystallinity and crystal morphology of HDPE were characterized using two-dimensional wide-angle X-ray diffraction (2D-WAXD), gel permeation chromatography (GPC), capillary rheometry and differential scanning calorimetry (DSC), respectively. It is demonstrated that the orientation, molecular weight, molecular weight distribution, melt flow rate and crystallinity have no obvious change with increasing injection speed. Nevertheless, the content of extended chain crystals or large folded chain crystals was found to decrease with increasing injection speed. Therefore, it is concluded that the decrease in tensile properties is mainly contributed by the reduced content of extended chain crystals or large folded chain crystals. This study provides industry with valuable information for the application of high speed injection molding.  相似文献   

13.
Poly(lactic acid) (PLA) and polypropylene (PP) blends of various proportions were prepared by melt-compounding. The miscibility, phase morphology, thermal behavior, and mechanical and rheological properties of the blends were investigated. The blends were immiscible systems with two typical morphologies, spherical droplet and co-continuous, and could be obtained at various compositions. Complex viscosity, storage modulus and loss modulus depend on the PP content. Thermal degradation of all blends led to two weight losses, for PLA and PP. The incorporation of PP improved the thermal stability of the blend. The effect of compatibilizer (ethylene-butyl acrylate-glycidyl methacrylate terpolymer, EBA-GMA) on the morphology and mechanical properties of 70/30 w/w PLA/PP blends was investigated. The tensile strength of these blends reached a maximum for 2.5 wt% EBA-GMA, and impact strength increased with increasing EBA-GMA content, suggesting that EBA-GMA is an effective compatibilizer for PLA/PP blends.  相似文献   

14.
Cardanol-based novolac-type phenolic resins were synthesized with different mole ratios of cardanol-to-formaldehyde, viz., 1:0.6, 1:0.7, and 1:0.8. These novolac resins were epoxidized with molar excess of epichlorohydrin at 120 °C in basic medium. The epoxidized novolac resins were, separately, blended with different weight ratios of carboxyl-terminated polybutadiene liquid rubber ranging between 0-25 wt% with an interval of 5 wt%. All the blends were cured at 150 °C with 40 wt% polyamide. The formation of various products during the curing of blend samples has been studied by Fourier-transform infra-red spectroscopic analysis. The tensile strength and elongation-at-break of the cured samples increased up to 15 wt% in the blend and decreased thereafter. This blend sample was also found to be most thermally stable system. The blend morphology, studied by scanning electron microscopy analysis, was finally correlated with the structural and property changes in the blends.  相似文献   

15.
The capillary extrusion of polypropylene (PP) and high-density polyethylene (HDPE) immiscible blends was studied in this work by rheo-particle image velocimetry (Rheo-PIV). The PP/HDPE blends were prepared by single screw extrusion and extruded through a transparent capillary die at a temperature of 200 °C and concentrations of 80/20, 60/40, 40/60 and 20/80 wt%, respectively. PIV measurements described accurately the flow behavior of PP/HDPE blends and revealed continuous velocity profiles in the die, without macroscopic phase separation, for all the blends in the resolution range of the PIV technique. The flow behavior of all the blends was shear-thinning (power-law) type and their viscosities laid in between the values corresponding to the neat polymers and increased in an exponential way along with the concentration of the highest viscosity component in the blend (HDPE). Also, it was found that the extruded blends acquired a stratified morphology and that HDPE mitigates extrudate distortions in PP, meanwhile PP eliminates slip and flow instabilities in HDPE by migrating to the region of highest shear stresses in the die. Migration of PP to the capillary wall was corroborated by Raman spectroscopy measurements on the periphery of solid extrudates. Finally, via calculations of the density of the molten blends under flow using the velocity profiles in the die, we show that the homopolymers are compatible in the molten state and follow a simple inverse relation for their density, and an exponential one for their viscosity.  相似文献   

16.
In this study, highly oriented shish-kebab structure was achieved via imposing oscillatory shear on the melts of linear low density polyethylene (LLDPE)/high density polyethylene (HDPE) blends during the packing stage of injection molding. To investigate the effect of molecular weight of HDPE on the formation of shish-kebab structure, two kinds HDPE with large melt flow index (low molecular weight) and small melt flow index (high molecular weight) were added into LLDPE matrix. The structural characteristics of LLDPE/HDPE blends were systematically elucidated through two-dimensional wide-angle x-ray scattering, scanning electron microscopy, and differential scanning calorimetry. Interestingly, an unexpected molecular weight dependence of shish-kebab structure of the prepared samples was found that the addition of HDPE with low molecular weight resulted in an higher degree of orientation, better regularity of lamellar arrangement, thicker lamellar size, and higher crystal melting temperature than that adding HDPE with high molecular weight. Correspondingly, the blend containing low molecular weight HDPE had better tensile strength. A possible mechanism was suggested to elucidate the role of HDPE molecular weight on the formation of shish-kebab structure in the oriented blends, considering the change of chain mobility and entanglement density with change of molecular weight.  相似文献   

17.
The chemorheology of blends of diallyl ortho-phthalate (DAOP) as reactive plasticizer of polyphenylene oxide (PPO) were monitored during their cure with either dicumyl peroxide (DCP) or tert-butyl hydroperoxide (TBHP), and their mechanical properties and morphology were studied. The steady shear and dynamic rheology behaviour was consistent with chemical gelation of DAOP in blends with low concentrations of PPO but the gelation behaviour at higher PPO concentrations was more complex. Dynamic mechanical thermal analysis of the blends of PPO:DAOP cured with either DCP or TBHP indicated a two phase structure. For PPO:DAOP/DCP, the lowest transition (between 150 °C and 200 °C) was attributed to a DAOP-rich phase and its Tg was higher than that for pure DAOP/DCP due to the presence of PPO in the DAOP-rich phase. The smaller damping shoulder near 250 °C was caused by a PPO-rich phase with a Tg that was lower than pristine PPO due to the presence of unpolymerized or polymerized DAOP. In contrast, the glass transition region of the PPO:DAOP/TBHP system was very broad due to an overlap of the transitions for DAOP-rich and PPO-rich phases caused by higher levels of unpolymerized DAOP. SEM observations of the blends revealed a two phase morphology with PPO-rich particles in a poly-DAOP matrix for blends with ?30 wt% PPO, a co-continuous morphology for blends with 40 wt% PPO, and a phase inverted morphology with more than 50 wt% PPO. These SEM observations agree with studies of the swelling, disintegration or dissolution of matrix of the blends in solvent.  相似文献   

18.
The crystal morphology, melting behavior, and mechanical properties of high-density polyethylene (HDPE) samples obtained via gas-assisted injection molding (GAIM) under different gas pressures were investigated. Moreover, the non-isothermal crystallization kinetics of HDPE under different cooling rates was also studied. The obtained samples were characterized via differential scanning calorimetry, two-dimensional wide-angle X-ray scattering (2D-WAXS), tensile testing, dynamic mechanical analysis (DMA) and scanning electron microscopy techniques. It was found that the properties were intimately related to each other. Macroscopically, the flow-induced morphology of the various HDPE samples was characterized with a hierarchical crystalline structure, possessing oriented lamellar structure, shish?Ckebab structure, and common spherulites in the skin, sub-skin, and gas channel region, respectively. The 2D-WAXS results demonstrated that the degree of orientation of the high gas pressure sample was larger than that of the low pressure sample at the corresponding layer. The tensile testing results of GAIM parts showed that the mechanical properties of the GAIM parts were improved with an increase of the gas pressure. Furthermore, the DMA was utilized to obtain the dynamic mechanical properties of the GAIM samples, and the results indicated that significant improvement of the orientation was observed with an increase of the gas pressure.  相似文献   

19.
Binary blends of recycled high‐density polyethylene (R‐HDPE) with poly(ethylene terephthalate) (R‐PET) and recycled polystyrene (R‐PS), as well as the ternary blends, i.e. R‐HDPE/R‐PET/R‐PS, with varying amounts of the constituents were prepared by twin screw extruder. The mechanical, rheological, thermal, and scanning electron microscopy (SEM) analyses were utilized to characterize the samples. The results revealed that both R‐HDPE/R‐PET and R‐HDPE/R‐PS blends show phase inversion but at different compositions. The R‐PET was found to have much higher influence on the properties enhancement of the R‐HDPE compared to R‐PS, but at the phase inverted situation, a significant loss in the tensile strength of R‐HDPE/R‐PET blend was observed due to the weak interaction at this morphological state. However, the ternary blends with higher loading of second phase, namely greater than 50 wt% of R‐PET+R‐PS, demonstrated better mechanical properties than the binary blends with the same content of either R‐PET or R‐PS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this work, gradient materials with low electrical resistivity were prepared by compounding isotactic polypropylene (iPP)/high density polyethylene (HDPE) blends with carbon black (CB) through extruding and injection molding. Contact angle measurements and morphology measurements showed that the CB particles were selectively located in HDPE phase and the final composites had a gradient structure that the HDPE/CB phase exhibited different morphologies in the skin layer and core layer of the composites under different processing procedures. The main factors influencing the formation of the functional gradient materials (FGM), including screw speed during extruding, iPP types and CB contents were discussed. They affect the phase morphology by shear stress, the restoration of HDPE phase, and the viscosity ratio of polymer blends, respectively. In conclusion, iPP/HDPE/CB FGM could be formed easily in the composites blending with the iPP type with narrow molecular weight distribution (MWD) and higher CB content extruded at higher screw speed. The electrical properties of iPP/HDPE/CB composites were studied and the results showed that screw speed in extrusion significantly influenced the percolation curve and electrical property of the final composites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号