首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The melting behavior and the crystallization kinetics of block poly(butylene/thiodiethylene succinate) copolymers (PBSPTDGS) with identical chemical composition (i.e., BS:TDGS = 50:50 mol %) were investigated by means of differential scanning calorimetry. Multiple endotherms were evidenced in PBSPTDGS samples, because of melting and recrystallization processes, similar to poly(butylene succinate) (PBS). By applying the Hoffman–Weeks’ method, the $ T_{\text{m}}^{ \circ } $ of the copolymers was derived. The isothermal crystallization kinetics was analyzed according to the Avrami’s treatment. The copolymer with long PBS blocks (PBSPTDGS15) is characterized by a very similar behavior with respect to pure PBS, indicating that PBS macromolecular folding is not affected by the presence of noncrystallizable thiodiethylene succinate blocks. In all the other cases, the overall crystallization rate was found to decrease as the block length is decreased, even though the work of chain folding, derived on the basis of Hoffman–Lauritzen nucleation theory, also decreased with the block length.  相似文献   

2.
In this study,the poly(D-lactide)-block-poly(butylene succinate)-block-poly(D-lactide)(PDLA-b-PBS-b-PDLA)triblock copolymers with a fixed length of PBS and various lengths of PDLA are synthesized,and the crystallization behaviors of the PDLA and PBS blocks are investigated.Although both the crystallization behaviors of PBS and PDLA blocks depend on composition,they exhibit different variations.For the PDLA block,its crystallization behaviors are mainly influenced by temperature and block length.The crystallization signals of PDLA block appear in the B-D 2-2 specimen,and these signals get enhanced with PDLA block length.The crystallization rates tend to decrease with increasing PDLA block lendth during crystallizing at 90 and 100°C.Crystallizing at higher temperature,the crystallization rates increase at first and then decrease with block length.The crystallization rates decrease as elevating the crystallization temperature.The melting temperatures of PDLA blocks increase with block lengths and crystallization temperatures.For the PBS block,its crystallization behaviors are mainly controlled by the nucleation and confinement from PDLA block.The crystallization and melting enthalpies as well as the crystallization and melting temperatures of PBS block reduce as a longer PDLA block has been copolymerized,while the crystallization rates of the PBS block exhibit unique component dependence,and the highest rate is observed in the B-D 2-2 specimen.The Avrami exponent of PBS crystallites is reduced as a longer PDLA block is incorporated or the sample is crystallized at higher temperature.This investigation provides a convenient route to tune the crystallization behavior of PBS and PLA.  相似文献   

3.
Poly(butylene/diethylene succinate) block copolymers (PBSPDGS), prepared by reactive blending of the parent homopolymers (PBS and PDGS) in the presence of Ti(OBu)4, were analyzed by 1H-NMR, TGA and DSC, in order to investigate the effects of the transesterification reactions on the molecular structure and thermal properties. 1H-NMR analysis evidenced the formation of copolymers whose degree of randomness increases with the mixing time. The thermal analysis of the melt-quenched samples showed that the melting peak, due to the crystalline phase of PBS, tends to disappear with increasing mixing time and therefore with decreasing the block length in the copolymers. As concern miscibility, a single homogeneous amorphous phase always occurred, independently on block length. Nevertheless, a phase separation, due to the tendency of the PBS blocks to crystallize, was evidenced in the copolymers with long butylene succinate sequences. The results obtained indicated that the block size had a fundamental role in determining the crystallizability and, therefore, phase behavior of the block copolymers.  相似文献   

4.
In order to modify the properties of poly(butylene succinate), poly(diethylene glycol succinate) (PDGS) segment was incorporated by chain‐extension reaction of dihydroxyl‐terminated PBS and PDGS precursors using hexamethylene diisocyanate as a chain extender to form PBS‐b‐PDGS multiblock copolymers. The chemical structure and basic physical properties of the multiblock copolyesters were characterized by nuclear magnetic resonance spectroscopy, differential scanning calorimeter (DSC), wide angle X‐ray diffraction, and tensile testing. The results suggested that the incorporation of PDGS segments would increase the elongation at break of PBS significantly while decrease its melting temperature and crystallization temperature slightly. The isothermal crystallization kinetics studied by DSC and polarized optical microscopy indicated that the crystallization rate of the multiblock polymers decreased gradually with increasing PDGS segment content while the crystallization mechanism kept unchanged and the spherulitic growth rate of the multiblock copolymers decreased gradually with increase in PDGS content due to its diluent effect to the crystallization of PBS segments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
The confined crystallization behavior, melting behavior, and nonisothermal crystallization kinetics of the poly(ethylene glycol) block (PEG) in poly(L ‐lactide)–poly(ethylene glycol) (PLLA–PEG) diblock copolymers were investigated with wide‐angle X‐ray diffraction and differential scanning calorimetry. The analysis showed that the nonisothermal crystallization behavior changed from fitting the Ozawa equation and the Avrami equation modified by Jeziorny to deviating from them with the molecular weight of the poly(L ‐lactide) (PLLA) block increasing. This resulted from the gradual strengthening of the confined effect, which was imposed by the crystallization of the PLLA block. The nucleation mechanism of the PEG block of PLLA15000–PEG5000 at a larger degree of supercooling was different from that of PLLA2500–PEG5000, PLLA5000–PEG5000, and PEG5000 (the numbers after PEG and PLLA denote the molecular weights of the PEG and PLLA blocks, respectively). They were homogeneous nucleation and heterogeneous nucleation, respectively. The PLLA block bonded chemically with the PEG block and increased the crystallization activation energy, but it provided nucleating sites for the crystallization of the PEG block, and the crystallization rate rose when it was heterogeneous nucleation. The number of melting peaks was three and one for the PEG homopolymer and the PEG block of the diblock copolymers, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3215–3226, 2006  相似文献   

6.
Poly(neopenthyl azelate) (PNAz) and poly(propylene/neopenthyl azelate) random copolymers (PPAz-PNAz) (NAz unit content from 5 to 20 mol%) were synthesized and characterized in terms of chemical structure and molecular weight. Afterwards, the polyesters were examined by TGA, DSC and X-ray diffractometry. Good thermal stability was found for each sample. The thermal analysis showed that the Tm of the copolymers decreased with the increment in NAz unit content, differently from Tg, which on the contrary increased. X-ray diffraction measurements allowed the identification of the PPAz crystalline structure in all the copolymers. Multiple endotherms were shown in the PPAz-PNAz samples, due to melting and recrystallization processes, similarly to PPAz. The of the copolymers was derived from the application of the Hoffman-Weeks’ method. Baur’s equation described well the Tm-composition data. The isothermal crystallization kinetics were analyzed according to Avrami’s treatment. The introduction of NAz units decreased the crystallization rate compared to pure PPAz. Values of the Avrami’s exponent n close to 3 were obtained in all cases, regardless of Tc, in agreement with a crystallization process originating from predeterminated nuclei and characterized by a three dimensional spherulitic growth.  相似文献   

7.
8.
Binary blends of polypropylene (PP)/recycled poly(ethylene terephthalate) (r-PET), r-PET/maleic anhydride grafted PP (PP-g-MA), r-PET/glycidyl methacrylate grafted PP (PP-g-GMA), and ternary blends of PP/r-PET (80/20 w/w) compatibilized with various amounts (2-10 wt%) of PP-g-MA or PP-g-GMA were prepared on a twin-screw extruder. The non-isothermal crystallization and melting behavior, and the crystallization morphology were investigated by DSC and POM. The chemical reactions of r-PET with PP-g-MA and PP-g-GMA were characterized by FT-IR. DSC results show that the crystallization peak temperatures of r-PET and PP increased when blending them together, due to the heterogeneous nucleation effect on each other. The of r-PET increased with increasing the content of PP-g-MA while slightly influenced by the content of PP-g-GMA in the binary blends of r-PET with grafted PP, implying different reactivity of r-PET with PP-g-MA and PP-g-GMA. The of PP in the ternary blends retained or slightly decreased, dependent on the compatibilizers and their contents. The melting peak temperature of r-PET in PP/r-PET blends compatibilized by PP-g-MA was lower than that of compatibilized by PP-g-GMA, indicating that PP-g-MA had stronger reactivity towards r-PET compared to PP-g-GMA. The crystallization and melting behavior of blends was influenced by the pre-melting temperature, especially the melting behavior of r-PET in the blends. The crystallization behavior of PP in the blends was also evaluated by Mo’s method. POM confirmed the heterogeneous nucleation effect of r-PET on PP.  相似文献   

9.
徐军 《高分子科学》2017,35(12):1552-1560
Differential scanning calorimetry (DSC) has been widely applied to study crystallization and melting of materials. However, for polymeric lamellar crystals, the melting thermogram during heating process usually exhibits a broad endothermic peak or even multiple endotherms, which may result from changes of metastability via recrystallization process. Sometimes, the recrystallization exotherm cannot be observed due to its overlapping with the melting endotherm. In this work, we employed a step heating procedure consisting of successive heating and temperature holding stages to measure the metastability of isothermally crystallized poly(butylene succinate) (PBS) crystals. With this approach we could gain the fraction of crystals melted at different temperature ranges and quantitatively detect the melting-recrystallization behavior. The melting-recrystallization behavior depends on the polymer chain structure and the crystallization temperature. For instance, PBS block copolymer hardly shows recrystallization behavior while PBS oligomer and high molecular weight PBS homopolymer demonstrate remarkable melting-recrystallization phenomenon. High molecular weight PBS isothermally crystallized in the low temperature range shows multiple melting-recrystallization while those isothermally crystallized at elevated temperatures do not exhibit observable recrystallization behavior. Furthermore, the melting endotherms were fitted via the melting kinetics equations. The original isothermally crystallized lamellae demonstrate quite different melting kinetics from the recrystallized lamellar crystals that melt at the highest temperature range, which is attributed to the different degrees of stabilization. Finally, the mechanism of melting-recrystallization is briefly discussed. We propose that apparent melt-recrystallization phenomenon be observed when melting of preformed lamellar crystals and recrystallization of thicker lamellae have similar free energy barrier.  相似文献   

10.
The effects of the chain structure and the intramolecular interaction energy of an A/B copolymer on the miscibility of the binary blends of the copolymer and homopolymer C have been studied by means of a Monte Carlo simulation. In the system, the interactions between segments A, B and C are more repulsive than those between themselves. In order to study the effect of the chain structure of the A/B copolymer on the miscibility, the alternating, random and block copolymers were introduced in the simulations, respectively. The simulation results show that the miscibility of the binary blends strongly depends on the intramolecular interaction energy () between segments A and B within the A/B copolymers. The higher the repulsive interaction energy, the more miscible the A/B copolymer and homopolymer C are. For the diblock copolymer/homopolymer blends, they tend to form micro phase domains. However, the phase domains become so small that the blend can be considered as a homogeneous phase for the alternating copolymer/homopolymer blends. Furthermore, the investigation of the average end-to-end distance () in different systems indicates that the copolymer chains tend to coil with the decrease of whereas the of the homopolymer chains depends on the chain structure of the copolymers. As for the system containing the alternating or the random copolymers, the homopolymer chains also tend to coil with the decrease of . However, for the systems including the block copolymers, there is a slight difference in the of the homopolymer chains with the variation of .  相似文献   

11.
聚(丁二酸丁二酯-co-丁二酸丙二酯)的等温结晶行为研究   总被引:1,自引:0,他引:1  
以1,4-丁二酸、1,4-丁二醇和1,3-丙二醇为原料通过直接熔融缩聚法合成了聚丁二酸丁二酯(PBS),聚丁二酸丙二酯(PPS)和聚(丁二酸丁二酯-co-丁二酸丙二酯)(PBSPS)等脂肪族聚酯.利用1H-NMR,WAXD,DSC和POM等研究了聚酯的结晶结构和结晶动力学过程等结晶行为.PBSPS的结晶晶型与PBS一致,说明只有丁二酸丁二酯(BS)单元结晶而丁二酸丙二酯(PS)单元处于无定形区.聚酯等温结晶后,在升温熔融过程中出现了多重熔融峰.分析表明多重熔融峰主要来自于聚酯升温过程中的熔融-重结晶行为.利用Avrami方程分析了聚酯的等温结晶动力学,Avrami指数n为2.2~2.8,说明聚酯等温结晶时主要以异相成核的三维生长方式进行;随着PS单元的增多,聚酯的表观结晶活化能升高,也就是说BS单元的结晶变得困难.POM观察到聚酯等温结晶时都出现了环带球晶现象,球晶形态会随着结晶温度和化学结构差异而改变.  相似文献   

12.
聚丁二酸丁二醇酯的自成核结晶行为   总被引:1,自引:0,他引:1  
利用差示扫描量热仪(DSC)研究了自成核对聚丁二酸丁二醇酯(PBS)的结晶行为的影响. 研究结果表明, PBS的有效自成核温度处理区间为118~120 ℃. PBS经自成核处理后结晶温度提高, 可以在100~118 ℃温度区间内迅速结晶. 同时, 研究了自成核处理后样品在100~104 ℃范围内的等温结晶行为、动力学过程及熔融行为. 结果表明, 随着等温结晶温度的升高, 结晶速率变慢, 熔融曲线出现多重熔融峰. Hoffman-Weeks方程分析结果表明, 自成核处理对PBS的平衡熔点没有影响. Avrami等温结晶动力学方程适合分析自成核处理样品的等温结晶动力学过程, 获得其动力学参数K与n, 其中n值偏大的原因在于自成核的样品结晶生长点增多. 根据Arrhenius方程, 计算获得PBS自成核处理后等温结晶活化能为-286 kJ/mol.  相似文献   

13.
本研究组在前期研究中发现, 改变溶剂的挥发速率可以调节体系中PE结晶和PVCH玻璃化之间的竞争, 进而调节PE结晶的受限程度. 超临界二氧化碳(scCO2)是一种非极性溶剂, 其对无定形聚合物(如PS)有很强的溶胀作用, 可显著降低聚合物的玻璃化转变温度, 提高原来被冻结的高分子链的活动能力. PVCH的分子结构与PS相似, 研究结果表明, scCO2对PVCH组分也有很强的溶胀能力, 导致PVCH的玻璃化转变温度降低, 从而可以改变PE嵌段的受限状态. 本文研究了PVCH-PE-PVCH在scCO2中的熔融再结晶行为.  相似文献   

14.
The block copolymers of poly(butylene succinate) (PBS) and poly(butylene terephthalate) (PBT) were synthesized by melt processing for different times. The sequence distribution, thermal properties, and crystallization behavior were investigated over a wide range of compositions. For PBS/PBT block copolymers it was confirmed by statistical analysis from 1H-NMR data that the degree of randomness (B) was below 1. The melting peak (Tm) gradually moved to lower temperature with increasing melt processing time. It can be seen that the transesterification between PBS and PBT leads to a random copolymer. From the X-ray diffraction diagrams, only the crystal structure of PBS appeared in the M1 copolymer (PBS 80 wt %) and that of PBT appeared in the M3 (PBS 50 wt %) to M5 (PBS 20 wt %) copolymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 147–156, 1998  相似文献   

15.
Differential scanning calorimetry (DSC) has been widely applied to study crystallization and melting of materials.However,for polymeric lamellar crystals,the melting thermogram during heating process usually exhibits a broad endothermic peak or even multiple endotherms,which may result from changes of metastability via recrystallization process.Sometimes,the recrystallization exotherm cannot be observed due to its overlapping with the melting endotherm.In this work,we employed a step heating procedure consisting of successive heating and temperature holding stages to measure the metastability of isothermally crystallized poly(butylene succinate) (PBS) crystals.With this approach we could gain the fraction of crystals melted at different temperature ranges and quantitatively detect the melting-recrystallization behavior.The melting-recrystallization behavior depends on the polymer chain structure and the crystallization temperature.For instance,PBS block copolymer hardly shows recrystallization behavior while PBS oligomer and high molecular weight PBS homopolymer demonstrate remarkable melting-recrystallization phenomenon.High molecular weight PBS isothermally crystallized in the low temperature range shows multiple melting-recrystallization while those isothermally crystallized at elevated temperatures do not exhibit observable recrystallization behavior.Furthermore,the melting endotherms were fitted via the melting kinetics equations.The original isothermally crystallized lamellae demonstrate quite different melting kinetics from the recrystallized lamellar crystals that melt at the highest temperature range,which is attributed to the different degrees of stabilization.Finally,the mechanism of melting-recrystallization is briefly discussed.We propose that apparent meltrecrystallization phenomenon be observed when melting of preformed lamellar crystals and recrystallization of thicker lamellae have similar free energy barrier.  相似文献   

16.
Poly(L-lactide)-based (PLLA) poly(ester-urethane)s are particularly relevant and gain significant attention due to their environment-friendly degradability and elastomeric shape memory capability. The tensile properties, resilience and degradation are strongly affected by their crystallization. This work was to investigate crystallization behaviors of the poly(L-lactide)-poly(butylene adipate)-poly(L-lactide) (PLLA-PBAPLLA) based thermoplastic polyurethane elastomers (PLAEUs) we synthesized previously. Dynamic scanning calorimetry (DSC) and polarized optical microscopy (POM) in combination with Avrami, Jezioney and Hoffman-Weeks models were used to analyze the impact of the PLLA block length on the crystallization temperature Tc, degree of crystallinity Xc, nucleation and spherulite growth mode and crystallization regime kinetics of the PLAEUs. The results indicate the low melting point poly(butylene adipate) (PBA) block resides in the amorphous domains while the PLLA block resides in both crystalline and amorphous phases. The Xc of the PLAEUs increase with the increased length of the PLLA block (i.e. higher content of PLLA block). The analyses with Avrami and Jezioney models show the PLAEU copolymers follow a disc-like spherulite growth. The covalently bonded PBA block decreases both nucleation velocity and spherulite growth rate in the isothermal crystallization. Such an impact is lessened as PLLA block length increases. The PLLA homopolymers demonstrate crystallization regime transition from II to III at a certain Tc of isothermal crystallization, while the crystallization regime kinetics of PLLA block in the PLAEUs are explained by a single regime III at low molecular weights of PLLA and the transition is restored as the PLLA block length increases (i.e. regime II to III).  相似文献   

17.
A series of poly[p-dioxanone-(butylene succinate)] (PPDOBS) copolymers were prepared from p-dioxanone (PDO), 1,4-butanediol and succinate acids through a two-step process including the initial prepolymer preparation of poly(p-dioxanone)diol (PPDO-OH) and poly(butylene succinate)diol (PBS-OH) and the following copolymerization of the two kinds of prepolymers by coupling with hexamethylene diisocyanate (HDI). The molecular structures of the prepared PPDO-OH, PBS-OH and PPDOBS were characterized by hydrogen nuclear magnetic resonance spectroscopy (1H NMR). The crystallization of the copolymers was investigated by using differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide angle X-ray diffraction (WAXD). It has been shown that the crystallization rate and the degree of crystallization increases with the increase of the weight fraction of poly(butylene succinate) (PBS) blocks in the copolymers. In phosphate buffer solution with pH 7.4 at 37 °C for 18 weeks, the hydrolytic degradation behaviors of the copolymers were studied. The changes of retention weight, water absorption, pH value, and surface morphologies with the degradation time showed that the hydrolytic degradation rate of PPDOBS could be controlled by adjusting the weight fraction of poly(p-dioxanone) (PPDO) and PBS blocks in the copolymers. The changes of the thermal properties of PPDOBS during the degradation were also investigated by DSC.  相似文献   

18.
The crystallization behavior of biodegradable poly(butylene succinate) and copolyesters poly(butylene succinate‐co‐propylene succinate)s (PBSPS) was investigated by using 1H NMR, DSC and POM, respectively. Isothermal crystallization kinetics of the polyesters has been analyzed by the Avrami equation. The 2.2‐2.8 range of Avrami exponential n indicated that the crystallization mechanism was a heterogeneous nucleation with spherical growth geometry in the crystallization process of polyesters. Multiple melting peaks were observed during heating process after isothermal crystallization, and it could be explained by the melting and recrystallization model. PBSPS was identified to have the same crystal structure with that of PBS by using wide‐angle X‐ray diffraction (WAXD), suggesting that only BS unit crystallized while the PS unit was in an amorphous state. The crystal structure of polyesters was not affected by the crystallization temperatures, too. Besides the normal extinction crosses under the POM, the double‐banded extinction patterns with periodic distance along the radial direction were also observed in the spherulites of PBS and PBSPS. The morphology of spherulites strongly depended on the crystallization temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 420–428, 2007  相似文献   

19.
The crystallization behavior of two microphase-separated poly(styrene-b-octadecylmethacrylate) block copolymers with lamellar and cylindrical morphology is studied by DSC. The findings are compared with results for a polyoctadecylmetharcylate (PODMA) homopolymer. The situation in the block copolymers is characterized by the occurrence of a confined side chain crystallization in small PODMA domains surrounded by a glassy polystyrene phase. The strength of confinement effects depends significantly on the block copolymer morphology. The crystallization behavior of PODMA lamellae with a thickness of about 10 nm is only slightly affected and similar to the situation in the homopolymer. In cylindrical PODMA domains with a diameter of about 10 nm strong confinement effects are observed: the degree of crystallinity is 50% reduced and the crystallization kinetics slows down. The Avrami coefficients change from n≈3 for the homopolymer and PODMA lamellae to n≈1 for PODMA cylinders. This observation indicates one-dimensional growth in small cylinders or a change from heterogeneous to homogeneous nucleation. Pros and cons of both approaches are discussed. A speculative picture explaining qualitatively the differences in the crystallization behavior of PODMA lamellae and cylinders in a glassy polystyrene matrix is presented.  相似文献   

20.
κ־�� 《高分子科学》2013,31(1):187-200
Biodegradable poly(butylene succinate) (PBS) and layered double hydroxide (LDH) nanocomposites were prepared via melt blending in a twin-screw extruder. The morphology and dispersion of LDH nanoparticles within PBS matrix were characterized by transmission electron microscopy (TEM), which showed that LDH nanoparticles were found to be well distributed at the nanometer level. The nonisothermal crystallization behavior of nanocomposites was extensively studied using differential scanning calorimetry (DSC) technique at various cooling rates. The crystallization rate of PBS was accelerated by the addition of LDH due to its heterogeneous nucleation effect; however, the crystallization mechanism and crystal structure of PBS remained almost unchanged. In kinetics analysis of nonisothermal crystallization, the Ozawa approach failed to describe the crystallization behavior of PBS/LDH nanocomposites, whereas both the modified Avrami model and the Mo method well represented the crystallization behavior of nanocomposites. The effective activation energy was estimated as a function of the relative degree of crystallinity using the isoconversional analysis. The subsequent melting behavior of PBS and PBS/LDH nanocomposites was observed to be dependent on the cooling rate. The POM showed that the small and less perfect crystals were formed in nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号