首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel semi-conducting polymer poly(9-bromophenanthrene) (P9BP) was synthesized electrochemically by direct anodic oxidation of it is monomer 9-bromophenanthrene (9BP) in boron trifluoride diethyl etherate (BFEE). The oxidation onset potential of 9BP in this medium was measured to be only 1.33 V vs. saturated calomel electrode (SCE). P9BP films obtained from BFEE showed good electrochemical behavior and nice thermal stability with electrical conductivity of 0.03 S cm−1. FTIR and 1H NMR spectra together with theoretical quantum chemistry calculations indicated that the P9BP was mainly grown via the coupling of the monomer at C3 and C6 positions. Furthermore, P9BP exhibited strong electrochromic nature from opaque green to light yellow between the doped and dedoped states on ITO electrode in solid state. Fluorescence spectral studies indicated that P9BP was a blue light emitter.  相似文献   

2.
High-quality free-standing poly(dibenzo-18-crown-6) (PDBC) films with a conductivity of 4.1 × 10−2 S cm−1 and good thermal stability were synthesized electrochemically on stainless steel electrode by direct anodic oxidation of dibenzo-18-crown-6 (DBC) in pure boron trifluoride diethyl etherate (BFEE). In this medium, the oxidation potential onset of DBC was measured to be only 0.98 V vs. SCE, which was much lower than that in acetonitrile + 0.1 mol L−1 Bu4NBF4 (1.45 V vs. SCE). PDBC films obtained from this medium showed good redox activity and stability in BFEE. The structural characterization of PDBC was performed using UV-vis, FTIR spectroscopy. The results of quantum chemistry calculations of DBC monomer and FTIR spectroscopy of PDBC films indicated that the polymerization mainly occurred at C(4) and C(5) positions). Fluorescent spectral studies indicated that PDBC was a blue light emitter. To the best of our knowledge, this is the first report on the electrodeposition of free-standing PDBC films.  相似文献   

3.
Visible-light transparent high-quality substrate-supported poly(2,3-benzofuran) (PBF) film has been successfully electrosynthesized by direct anodic oxidation of 2,3-benzofuran on stainless steel sheet in boron trifluoride diethyl etherate (BFEE) containing 10% poly(ethylene glycol) (PEG) with molar mass of 400 (by volume). The oxidation potential of 2,3-benzofuran in this medium was measured to be only 1.0 V vs. SCE, which is lower than that determined in acetonitrile + 0.1 M Bu4NBF4 (1.2 V vs. SCE). The PBF films obtained in this media showed good electrochemical behaviors and good thermal stability with conductivity of 10−2 S cm−1, and the doping level of as-prepared PBF films was determined to be only 8.9%. The structure and morphology of the polymer were investigated by UV-vis, infrared spectroscopy and scanning electron microscopy (SEM), respectively. To the best of our knowledge, this is the first case for the syntheses of PBF films.  相似文献   

4.
A tungsten trioxide (WO3) film was prepared by calcination from a precursor paste including suspended ammonium tungstate and polyethylene glycol (PEG). The ammonium tungstate suspension was yielded by an acid-base reaction of tungstic acid and an ammonium solution followed by deposition with ethanol addition. Thermogravimetric (TG) analysis showed that the TG profile of PEG is significantly influenced by deposited ammonium tungstate, suggesting that PEG is interacting strongly with deposited ammonium tungstate in the suspension paste. X-ray diffraction (XRD) data indicated that the WO3 film is crystallized by sintering over 400 °C. The scanning electron microscopic (SEM) measurement showed that the film is composed of the nano-structured WO3 platelets. The semiconductor properties of the film were examined by Mott-Schottky analysis to give flat band potential EFB=0.30 V vs. saturated calomel reference electrode (SCE) and donor carrier density ND=2.5×1022 cm−3, latter of which is higher than previous WO3 films by two orders of magnitude. The higher ND was explained by the large interfacial heterojunction area caused by the nano-platelet structure, which apparently increases capacitance per a unit electrode area. The WO3 film sintered at 550 °C produced 3.7 mA cm−2 of a photoanodic current at 1.2 V vs. SCE under illumination with a 500 W xenon lamp due to catalytic water oxidation. This photocurrent was 4.5-12.8 times higher than those for the other control WO3 films prepared by similar but different procedures. The high catalytic activity could be explained by the nano-platelet structure. The photocurrent was generated on illumination of UV and visible light below 470 nm, and the maximum incident photon-to-current conversion efficiency (IPCE) was 47% at 320 nm at 1.2 V. Technically important procedures for preparation of nano-structured platelets were discussed.  相似文献   

5.
High‐quality poly(diphenyl ether) (PDPE) films with electrical conductivity of 4.4 × 10?1 S cm?1 were synthesized electrochemically by direct anodic oxidation of diphenyl ether (DPE) in boron trifluoride diethyl etherate (BFEE) containing 5% concentrated sulfuric acid (SA) (by volume). The oxidation potential onset of DPE in pure BFEE was measured to be only 1.37 V versus a saturated calomel electrode (SCE), which was much lower than that determined in acetonitrile + 0.1 mol L?1 tetrabutylammonium tetrafluoroborate (1.98 V vs. SCE). The addition of SA to BFEE can further decrease the oxidation potential onset of the monomer to 1.18 V versus SCE in the mixed electrolyte of BFEE + 5% SA. PDPE films obtained from this medium showed good redox activity and stability even in concentrated SA. Dedoped PDPE films were partly soluble in the strong polar organic solvent dimethyl sulfoxide. Fluorescent spectral studies indicated that soluble PDPE was a good blue‐light emitter with a quantum yield of 0.30. Infrared spectroscopy and quantum chemistry calculations indicated that the electropolymerization of DPE occurred mainly at C4 and C4′. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5932–5941, 2007  相似文献   

6.
The La(Mn0.5Co0.5)1−xCuxO3−δ series with x=0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8 and 1 was synthesized by the Pechini method to obtain insight into the phase formation in the quasi-ternary LaMnO3-LaCoO3-“LaCuO3” system caused by the instability of LaCuO3 under ambient conditions. After sintering at 1100°C some remarkable results were obtained: LaMn0.3Co0.3Cu0.4O3−δ crystallized as a single phase in the orthorhombic perovskite structure typical of LaCuO3. Among the synthesized compositions this compound showed the highest electrical conductivity in air at 800°C (155 S cm−1) and also the highest thermal expansion coefficient (α30−800°C=15.4×10−6 K−1). The LaCuO3−δ composition also crystallized as a single phase but in a monoclinic structure although previous investigations have shown that other phases are preferably formed after sintering at 1100°C. The electrical conductivity and thermal expansion coefficient were the lowest within the series of compositions, i.e. 9.4 S cm−1 and 11.9×10−6 K−1, respectively.  相似文献   

7.
The quaternary manganese tin bismuth selenide, Mn1.34Sn6.66Bi8Se20 was synthesized by combining constituent elements at 723 K. Single crystal structure determination revealed that Mn1.34Sn6.66Bi8Se20 is isostructural to the mineral pavonite, AgBi3S5, crystallizing in the monoclinic space group C2/m (#12) with a=13.648(3) Å; b=4.175(1) Å; c=17.463(4) Å; β=93.42(3)°. In the structure, two kinds of layered modules, denoted A and B, alternate along [0 0 1]. Module A consists of paired chains of face-sharing monocapped trigonal prisms (around Bi/Sn) separated by a single chain of edge-sharing octahedra (around Mn/Sn). Module B represents a NaCl-type fragment of edge-sharing [(Bi/Sn)Se6] octahedra. Mn1.34Sn6.66Bi8Se20 is an n-type narrow gap semiconductor with Eg∼0.29 eV. At 300 K, thermopower, electrical conductivity and lattice thermal conductivity values are −123 μV/K, 47 S/cm and 0.6 W/m K, respectively. Mn1.34Sn6.66Bi8Se20 is paramagnetic at high temperatures and undergoes antiferromagnetic transition at TN=10 K.  相似文献   

8.
High quality poly(5-methylindole) (P5MeI) films, especially with good fluorescence properties, were synthesized electrochemically by direct anodic oxidation of 5-methylindole in boron trifluoride diethyl etherate (BFEE) containing additional 50% diethyl ether (EE) (by volume). The oxidation potential onset of 5-methylindole in this medium was measured to be only 0.84 V vs. SCE, which was much lower than that determined in acetonitrile + 0.1 mol L−1 TBATFB (1.08 V vs. SCE). P5MeI films obtained from this medium showed good electrochemical behavior and good thermal stability with conductivity of 10−2 S cm−1, indicating that BFEE was a better medium than acetonitrile for the electrosyntheses of P5MeI films. Dedoped P5MeI films were thoroughly soluble in strong polar solvent such as dimethyl sulfoxide (DMSO). 1H NMR spectroscopy and FT infrared spectrum of dedoped P5MeI films strongly suggested that the monomers were linked via the positions 2 and 3. Fluorescent spectral studies indicated that P5MeI was a good violet-blue light emitter with the excitation and emission wavelength of 310 nm and 418 nm, respectively. To the best of our knowledge, this is the first case that 5-methyl group substituted polyindole films with good fluorescence properties can be electrodeposited.  相似文献   

9.
Three types of carbazole containing 1,5-disubstituted poly(2,6-naphthalene) derivatives, i.e., 2,6-naphthalene homopolymer that has a carbazolyl side chain at 1,5-positions, random copolymers and alternating copolymers consisting of 1,5-dialkoxynaphthalene-2,6-diyl and N-phenylcarbazole-2,7-diyl were newly synthesized by Ni-mediated Yamamoto polycondensation and Pd-catalyzed Suzuki coupling reaction. The number-average molecular weights (Mn) of the polymers and their polydispersity indices (Mw/Mn) were 5.4-8.2 × 103 and 1.4-1.7, respectively. These polymers exhibited blue photoluminescence in the film states and high fluorescence quantum efficiencies in CHCl3 (?fl = 0.70-1.00). The electroluminescence properties of these polymers were investigated by fabricating a PLED device that has a configuration of ITO/PEDOT(PSS)/polymer/CsF/Al. The device fabricated with the random copolymer exhibited highest performances showing a maximum brightness of 8370 cd/m2 at 13 V and a maximum efficiency of 2.16 cd/A at 7 V.  相似文献   

10.
The thermal conductivity and heat capacity of high-purity single crystals of yttrium titanate, Y2Ti2O7, have been determined over the temperature range 2 K?T?300 K. The experimental heat capacity is in very good agreement with an analysis based on three acoustic modes per unit cell (with the Debye characteristic temperature, θD, of ca. 970 K) and an assignment of the remaining 63 optic modes, as well as a correction for CpCv. From the integrated heat capacity data, the enthalpy and entropy relative to absolute zero, are, respectively, H(T=298.15 K)−H0=34.69 kJ mol−1 and S(T=298.15 K)−S0=211.2 J K−1 mol−1. The thermal conductivity shows a peak at ca. θD/50, characteristic of a highly purified crystal in which the phonon mean free path is about 10 μm in the defect/boundary low-temperature limit. The room-temperature thermal conductivity of Y2Ti2O7 is 2.8 W m−1 K−1, close to the calculated theoretical thermal conductivity, κmin, for fully coupled phonons at high temperatures.  相似文献   

11.
A Na3V2(PO4)3 sample coated uniformly with a layer of 6 nm carbon has been successfully synthesized by a one-step solid state reaction. This material shows two flat voltage plateaus at 3.4 V vs. Na+/Na and 1.63 V vs. Na+/Na in a nonaqueous sodium cell. When the Na3V2(PO4)3/C sample is tested as a cathode in a voltage range of 2.7-3.8 V vs. Na+/Na, its initial charge and discharge capacities are 98.6 and 93 mAh/g. The capacity retention of 99% can be achieved after 10 cycles. The electrode shows good cycle performance and moderate rate performance. When it is tested as an anode in a voltage range of 1.0-3.0 V vs. Na+/Na, the initial reversible capacity is 66.3 mAh/g and the capacity of 59 mAh/g can be maintained after 50 cycles. These preliminary results indicate that Na3V2(PO4)3/C is a new promising material for sodium ion batteries.  相似文献   

12.
Extended electron rich bis-chalcogenapyrans and bis-benzochalcogenapyrans have been synthesized by Pd0 catalyzed dimerization of α- and γ-methylene chalcogenapyran and benzochalcogenapyran Fischer type carbene complexes. Voltammetric studies performed on these molecules show a single two-electron wave around 0 V versus SCE, which is ascribed to the oxidation of the neutral form in radical and dipyrylium cations. DFT calculations show that the oxidation leads to a rotating movement around the central C-C bond and suggest that the solvent plays a major role in the observation of the two one-electron systems. Furthermore, according to the structure, these molecules are likely to be reduced at very low potential (E=−1.5 V vs SCE) via a two-electron transfer reaction.  相似文献   

13.
An enhancement of the electrical conductivity has been found in nano-grain sized Ce0.9Gd0.1O2−δ ceramics when measured in N2 (pO2=3.5×10−6 atm) in comparison with the most commonly accepted values of bulk ionic conductivity. We first present the synthesis and characterisation of the nanoparticles later used for the preparation of dense nanoceramics of Gd-doped CeO2. The nanoparticles were characterised by X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). The good sintering properties of these nanopowders allowed us to obtain very dense ceramics (>90% theoretical density) while keeping the grain size close to 100 nm. The microstructure of these nanoceramics was analysed by AFM and scanning electron microscopy (SEM) while the electrical characterisation was performed by the 4-point dc technique between 500 and 950 °C in air or N2 and ac impedance between 150 and 400 °C in air and or argon. We briefly discuss the possibilities of electron vs. oxygen ion conduction and grain boundary vs. bulk conductivity. The features exhibited by these ceramics represent an increased potential to process solid electroceramics materials with specific levels of electronic and/or ionic conductivities for a variety of electrochemical devices.  相似文献   

14.
Reaction of a group of N-(2′-hydroxyphenyl)benzaldimines, derived from 2-aminophenol and five para-substituted benzaldehydes (the para substituents are OCH3, CH3, H, Cl and NO2), with [Rh(PPh3)3Cl] in refluxing toluene in the presence of a base (NEt3) afforded a family of organometallic complexes of rhodium(III). The crystal structure of one complex has been determined by X-ray crystallography. In these complexes the benzaldimine ligands are coordinated to the metal center, via dissociation of the phenolic proton and the phenyl proton at the ortho position of the phenyl ring in the imine fragment, as dianionic tridentate C,N,O-donors, and the two PPh3 ligands are trans. The complexes are diamagnetic (low-spin d6, S = 0) and show intense MLCT transitions in the visible region. Cyclic voltammetry shows a Rh(III)Rh(IV) oxidation within 0.63-0.93 V vs SCE followed by an oxidation of the coordinated benzaldimine ligand. A reduction of the coordinated benzaldimine is also observed within −0.96 to −1.04 V vs SCE. Potential of the Rh(III)Rh(IV) oxidation is found to be sensitive to the nature of the para-substituent.  相似文献   

15.
Treatment of the tetraindium cluster In4[C(SiMe3)3]4 (1) with diaryl dichalcogenides Aryl-E-E-Aryl (E = S, Se and Te) afforded the corresponding RIn(E-Aryl)2 [R = C(SiMe3)3] compounds by insertion of the monomeric fragments InR into the chalcogen-chalcogen bonds. The dimeric formula units adopt different conformations in the solid state (Ci vs. C2 h).  相似文献   

16.
The Raman spectra of neat (C2H5)2CO (pentanone) and its binary mixtures with hydrogen donor solvent (CH3OH), [(C2H5)2CO + CH3OH] having different mole fractions of the reference system, (C2H5)2CO in the range 0.1-0.9 at a regular interval of 0.1 were recorded in the CO stretching region. In neat liquid, the Raman peak appears asymmetric. The asymmetric nature of the peak has been attributed to the CO stretching mode of the two conformers of (C2H5)2CO having C2 and C2v point groups and the corresponding bands at ∼1711 and ∼1718 cm−1, respectively. A careful analysis of the Iiso (isotropic component of the Raman scattered intensity) at different concentrations reveals that upon dilution with methanol, at mole fraction C = 0.6, an additional peak in the CO stretching region is observed at ∼1703 cm−1 which is attributed to the hydrogen bonding with methanol. A peculiar feature in this study is that upon dilution, the peak at ∼1718 cm−1 shows a minimum at C = 0.6, but on further dilution it shows a blue shift. However, the other peak at ∼1711 cm−1 shows a continuous red shift with dilution as well as a maximum at C = 0.7 in the linewidth vs. concentration plot, which is essentially due to competition between motional narrowing and diffusion phenomena. A significant amount of narrowing in the Raman band at ∼1718 cm−1 can be understood in terms of caging effect of the reference molecule by the solvent molecules at high dilution. A density functional theoretic (DFT) calculation on optimized geometries and vibrational frequencies of two conformers of neat (C2H5)2CO in C2 ad C2v forms and the complexes with one and two CH3OH molecules with both the conformers was performed. The experimental results and theoretical calculations together indicate a co-existence of two conformers as well as hydrogen bonded complex with methanol in the binary mixture, [(C2H5)2CO + CH3OH] at intermediate concentrations.  相似文献   

17.
Two new vanadium squarates have been synthesized, characterized by infrared and thermal behavior and their structures determined by single crystal X-ray diffraction. Both structures are made of discrete, binuclear vanadium entity but in 1, [V(OH)(H2O)2(C4O4)]2·2H2O the vanadium atom is trivalent and the entity is neutral while in 2, (NH4)[(VO)2(OH)(C4O4)2(H2O)3]·3H2O, the vanadium atom is tetravalent and the entity is negatively charged, balanced by the presence of one ammonium ion. Both molecular anions are bridged by two terminal μ2 squarate ligands. 1 crystallizes in the triclinic system, space group P-1, with lattice constants a=7.5112(10) Å, b=7.5603(8) Å, c=8.2185(8) Å, α=106.904(8)°, β=94.510(10)°, γ=113.984(9)° while 2 crystallizes in the monoclinic system, space group C2/c, with a=14.9340(15) Å, b=6.4900(9) Å, c=17.9590(19) Å and β=97.927(12)°. From the magnetic point of view, V(III) binuclear species show ferromagnetic interactions at low temperatures. However, no anomalies pointing to magnetic ordering are observed down to 2 K.  相似文献   

18.
Reaction of five N,N′-bis(aryl)pyridine-2,6-dicarboxamides (H2L-R, where H2 denotes the two acidic protons and R (R = OCH3, CH3, H, Cl and NO2) the para substituent in the aryl fragment) with [Ru(trpy)Cl3](trpy = 2,2′,2″-terpyridine) in refluxing ethanol in the presence of a base (NEt3) affords a group of complexes of the type [RuII(trpy)(L-R)], each of which contains an amide ligand coordinated to the metal center as a dianionic tridentate N,N,N-donor along with a terpyridine ligand. Structure of the [RuII(trpy)(L-Cl)] complex has been determined by X-ray crystallography. All the Ru(II) complexes are diamagnetic, and show characteristic 1H NMR signals and intense MLCT transitions in the visible region. Cyclic voltammetry on the [RuII(trpy)(L-R)] complexes shows a Ru(II)–Ru(III) oxidation within 0.16–0.33 V versus SCE. An oxidation of the coordinated amide ligand is also observed within 0.94–1.33 V versus SCE and a reduction of coordinated terpyridine ligand within −1.10 to −1.15 V versus SCE. Constant potential coulometric oxidation of the [RuII(trpy)(L-R)] complexes produces the corresponding [RuIII(trpy)(L-R)]+ complexes, which have been isolated as the perchlorate salts. Structure of the [RuIII(trpy)(L-CH3)]ClO4 complex has been determined by X-ray crystallography. All the Ru(III) complexes are one-electron paramagnetic, and show anisotropic ESR spectra at 77 K and intense LMCT transitions in the visible region. A weak ligand-field band has also been shown by all the [RuIII(trpy)(L-R)]ClO4 complexes near 1600 nm.  相似文献   

19.
The synthesis and characterization of a previously unknown, rare organometallic-phosphate complex, {[Bu4N][(1,5-COD)Ir · HPO4]}n (1), is described. Characterization of 1 was accomplished by elemental analysis, electrospray mass spectrometry (ES-MS), and 1H and 13C NMR which established the symmetry of the product as at least C2 or Cs. The ES-MS reveals an interesting, Ir(I) to Ir(III) oxidative process with intense peaks displaying the 191Ir/193Ir isotopic distribution patterns expected for the fragments [(1,5-COD)IrIII(HPO4)2], [(C8H11)2(IrIII)2(PO4)(HPO4)(H2O)], and [(C8H11)2(IrIII)2(PO4)(HPO4)(H2O)2]. These fragments, in turn, provide evidence for a structure with two HPO42− groups attached to a single Ir, for example ring structures (of at least such C2 or Cs symmetry) such as {[Bu4N][(1,5-COD)Ir · HPO4]}2. Complex 1 is significant since it is known to be the preferred, compositionally precise precursor to the prototype example of a recently discovered class of novel, HPO42− and Bu4N+ stabilized nanoclusters, (Bu4N)2n2n+[Ir(0)n · (HPO4)n]2n. Such nanoclusters are being extended, via their analogous hydrogenphosphate-organometallic precursors (1,5-COD)M+ or 2+/HPO42− (M=Rh(I), Ru(II), Pt(II)) to their corresponding, catalytically active [M(0)n · (HPO4)n]2n nanoclusters.  相似文献   

20.
Composite solid electrolytes in the system (1 − x)LiNO3-xAl2O3, with x = 0.0-0.5 were synthesized by sol-gel method. The synthesis carried out at low temperature resulted in voluminous and fluffy products. The obtained materials were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy/energy dispersive X-ray, Fourier transform infrared spectroscopy and AC impedance spectroscopy. Structural analysis of the samples showed base centred cell type of point lattice of LiNO3 for the composite samples with x = 0.1-0.2 and body centred cell for the sample with x = 0.3. A trace amount of α-LiAlO2 crystal phase was also present in these composite samples. The thermal analysis showed that the samples were in a stable phase between 48 °C and 230-260 °C. Morphological analysis indicated the presence of amorphous phase and particles with sizes ranging from micro to nanometre scale for the composite sample with x = 0.1. The conductivities of the composites were in the order of 10−3 and 10−2 S cm−1 at room temperature and 150 °C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号