首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Atom transfer radical polymerization of methyl methacrylate initiated by a poly(oxyethylene) macroinitiator by the esterification of PEG 1500 with 2-chloro propionyl chloride was synthesized. These polymerization proceeds both in bulk and solution with a quantitative initiation efficiency, leading to A-B-A triblock copolymers. The macroinitiators and their block copolymers were characterized by FT-IR, FT-NMR and GPC analyses. In bulk polymerization, the kinetic study showed that the relationship between ln[M]0/[M] vs time was linear showing that there is a constant concentration of active species throughout the polymerization and follow the first order kinetics with respect to monomer. Moreover, the experimental molecular weight of the block copolymers increased linearly with the monomer conversion and the polydispersity index remained between 1.3 and 1.5 throughout the polymerization. No formation of homo poly(methyl methacrylate) could also be detected, and all this confirms that the bulk polymerization proceeds in a controlled/“living” manner.  相似文献   

2.
Amphiphilic block copolymers of methyl methacrylate (MMA) and sodium styrene sulfonate (SSNa) were successfully synthesized via direct atom transfer radical polymerization (ATRP) of SSNa. First, poly(sodium styrene sulfonate) (PSSNa) or poly(methyl methacrylate) (PMMA) macroinitiators were prepared using proper ATRP systems for each case. In some cases, functional initiators, which allow further reactions, were used. The macroinitiators were characterized and further used to synthesize PSSNa/PMMA block copolymers, by using proper solvent combinations, such as N,N-dimethylformamide/water or methanol/water at appropriate volume ratios, in order to ensure solubility of the synthesized amphiphilic copolymers. The molecular weight of the copolymers was determined by gel permeation chromatography, using water as eluent. By using a combination of analytical techniques like 1H NMR, FTIR and thermogravimetry, the chemical structure and the actual copolymer composition were determined. Since, the block copolymers were soluble in water, forming hydrophilic/hydrophobic domains in aqueous solution, their micellization behavior was further studied by pyrene fluorescence probing.  相似文献   

3.
Direct insertion probe pyrolysis mass spectrometry (DIP-MS) analyses of polycarbonate/poly(methyl methacrylate)/poly(vinyl acetate), (PC/PMMA/PVAc), ternary blends have been performed. The PC/PMMA/PVAc ternary blends were obtained by coalescing from their common γ-cyclodextrin-inclusion compounds (CD-ICs), through the removal of the γ-CD host (coalesced blend), and by a co-precipitation method (physical blend). The coalesced ternary blend showed different thermal behaviors compared to the co-precipitated physical blend. The stability of PC chains decreased due to the reactions of CH3COOH formed by deacetylation of PVAc above 300 °C, for both coalesced and physical blends. This process was more effective for the physical blend most likely due to the enhanced diffusion of CH3COOH into the amorphous PC domains, where it can further react producing low molecular weight PC fragments bearing methyl carbonate chain ends. The decrease in thermal stability of PC chains was less significant for the coalesced ternary blend indicating that the diffusion of CH3COOH was either somewhat limited or competed with intermolecular reactions between PMMA and PC and between PMMA and PVAc, which were detected and were associated with their close proximity in the intimately mixed coalesced PC/PMMA/PVAc ternary blend.  相似文献   

4.
The emulsion atom transfer radical block copolymerization of 2‐ethylhexyl methacrylate (EHMA) and methyl methacrylate (MMA) was carried out with the bifunctional initiator 1,4‐butylene glycol di(2‐bromoisobutyrate). The system was mediated by copper bromide/4,4′‐dinonyl‐2,2′‐bipyridyl and stabilized by polyoxyethylene sorbitan monooleate. The effects of the initiator concentration and temperature profile on the polymerization kinetics and latex stability were systematically examined. Both EHMA homopolymerization and successive copolymerization with MMA proceeded in a living manner and gave good control over the polymer molecular weights. The polymer molecular weights increased linearly with the monomer conversion with polydispersities lower than 1.2. A low‐temperature prepolymerization step was found to be helpful in stabilizing the latex systems, whereas further polymerization at an elevated temperature ensured high conversion rates. The EHMA polymers were effective as macroinitiators for initiating the block polymerization of MMA. Triblock poly(methyl methacrylate–2‐ethylhexyl methacrylate–methyl methacrylate) samples with various block lengths were synthesized. The MMA and EHMA reactivity ratios determined by a nonlinear least‐square method were ~0.903 and ~0.930, respectively, at 70 °C. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1914–1925, 2006  相似文献   

5.
Copolymers of styrene and methyl methacrylate were synthesized by atom transfer radical polymerization using methyl 2‐bromopropionate as initiator and CuBr/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalyst. Molecular weight distributions were determined by gel permeation chromatography. The composition of the copolymer was determined by 1H NMR. The comonomer reactivity ratios, determined by both Kelen–Tudos and nonlinear error‐in‐variables methods, were rS = 0.64 ± 0.08, rM = 0.63 ± 0.08 and rS = 0.66, rM = 0.65, respectively. The α‐methyl and carbonyl carbon resonances were found to be compositionally and configurationally sensitive. Complete spectral assignments of the 1H and 13C NMR spectra of the copolymers were done by distortionless enhancement by polarization transfer and two‐dimensional NMR techniques such as heteronuclear single quantum coherence and heteronuclear multiple quantum coherence. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2076–2085, 2006  相似文献   

6.
Hyperbranched-linear star block copolymers, hyperbranched poly(siloxysilane)-block-polystyrene (HBPS-b-PSt), were prepared by atom transfer radical polymerization (ATRP) of styrene in xylene, using bromoester-terminated HBPS (HBPS-Br (P3), Mn = 7500, Mw/Mn = 1.76) as a macroinitiator. The number-average molecular weights of the obtained polymers (Mn) were in the range of 21,800-60,000 and molecular weight distributions were unimodal throughout the reaction (Mw/Mn = 1.28-1.40). These polymers showed 5 wt.% decomposition temperature (Td5) over 300 °C. The DSC thermograms of the resulting polymers indicated two glass transition temperatures (Tg). The Tg of HBPS segment shifted to higher value while the Tg of PSt segment shifted to lower value compared with those of the homopolymers. Preliminary physical characterization related to the solution viscosity of the resulting block copolymers is also reported.  相似文献   

7.
The self-initiated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in cyclohexanone (CHO) in the presence of CuCl2/N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) is reported. The linear semilogarithmic plot of ln([M]0/[M]) vs time, the linear increase of number-average molecular weight (Mn) with conversion, and rather narrow molecular weight distributions (MWDs) have been observed, which are in agreement of the characteristics of living/controlled polymerization. The NMR spectrum revealed the existence of terminal chlorine. The chain extension further proved the living characteristic. The polymerization can only be successful using CHO as the solvent, and is well controlled at the temperature as low as 50 °C. The effects of ligand, solvent, temperature and monomer to catalyst ratio are all discussed.  相似文献   

8.
The controlled polymerization of methyl methacrylate (MMA) in bulk was initiated with p‐chlorobenzenediazonium tetrafluoroborate ( 1 ) and Cu(II) or Cu(I)/Cu(II)/N,N,N′,N″,N″‐pentamethyldietylene triamine (PMDETA) complex system at various temperatures (20, 60, and 90 °C). The proposed polymerization mechanism is based on the Meerwein‐type arylation reaction followed by a reverse atom transfer radical polymerization. In this mechanism, aryl radicals formed by the reaction with 1 and Cu(I) and/or PMDETA initiated the polymerization of MMA. The polymerization is controlled up to a molecular weight of 46,000 at 90 °C. Chain extension was carried out to confirm the controlled manner of the polymerization system. In all polymerization systems, the polydispersity index and initiator efficiency ranged from 1.10–1.57 to 0.10–0.21, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2019–2025, 2003  相似文献   

9.
Styrene (S) and glycidyl methacrylate (GMA) copolymers were synthesized by atom transfer radical polymerization (ATRP) under different conditions. The effect of initiators, ligands, solvents, and temperature to the linear first-order kinetics and polydispersity index (PDI) was investigated for bulk polymerization. First-order kinetics was observed between linearly increasing molecular weight versus conversion and low polydispersities (PDI) were achieved for ethyl 2-bromo isobutyrate (EBiB) as an initiator and N,N′,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA)/CuBr as a catalyst. The copolymers with different compositions were synthesized using different in-feed ratios of monomers. Copolymers composition was calculated from 1H NMR spectra which were further confirmed by quantitative 13C{1H} NMR spectra. The monomer reactivity ratios were obtained with the help of Mayo-Lewis equation using genetic algorithm method. The values of reactivity ratios for glycidyl methacrylate and styrene monomers are rG = 0.73 and rS = 0.42, respectively.  相似文献   

10.
An investigation of the thermal stability of poly(methyl methacrylate) (PMMA) blends with poly(vinyl acetate) (PVAc) revealed that PVAc acts as a stabilizer as concerns thermal and photochemical degradation when the processes take place in air. The temperatures of decomposition of these blends are higher than that of pure PMMA. The efficiency of photodegradation and photooxidation in the blends is lower than that of pure PMMA.  相似文献   

11.
A systematic study of the terpolymerization of butyl acrylate/methyl methacrylate/vinyl acetate (BA/MMA/VAc) was conducted. In this stage of the study, batch emulsion terpolymerizations were performed in a 5 L stainless steel pilot plant reactor. The experiments were designed using a Bayesian (optimal) technique. The polymers produced were characterized for conversion, composition, molecular weight, and particle size. Conversion, terpolymer composition, number- and weight-average molecular weight, and average particle size results are discussed in light of the influence of seven factors and the interaction of these factors. The factors studied include monomer feed composition, initiator concentration, chain transfer agent concentration, impurity concentration, initiator type, emulsifier concentration, and temperature. A “two-stage rate” phenomenon, similar to that occurring in bulk co- and terpolymerization and emulsion copolymerization of acrylic/vinyl acetate systems was observed in the conversion, composition and molecular weight data. Furthermore, an interesting yet often ignored effect of impurities on emulsion polymerization kinetics was explained. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1659–1672, 1997  相似文献   

12.
Pyridine was used as a solvent for the atom transfer radical polymerization (ATRP) of methyl methacrylate. The homopolymerizations were carried out with methyl 2‐halopropionate (MeXPr, where X was Cl or Br) as an initiator, copper halide (CuX) as a catalyst, and 2,2′‐bipyridine as a ligand from 80 to 120 °C. The mixed halogen system methyl 2‐bromopropionate/copper chloride was also used. For all the initiator systems used, the polymerization reaction showed linear first‐order rate plots, a linear increase in the number‐average molecular weight with conversion, and relatively low polydispersities. In addition, the dependence of the polymerization rate on the temperature is presented. These data are compared with those obtained in bulk, demonstrating the effectiveness of this solvent for this monomer in ATRP. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3443–3450, 2001  相似文献   

13.
ABA block copolymers of methyl methacrylate and methylphenylsilane were synthesized with a methodology based on atom transfer radical polymerization (ATRP). The reaction of samples of α,ω‐dihalopoly(methylphenylsilane) with 2‐hydroxyethyl‐2‐methyl‐2‐bromoproprionate gave suitable macroinitiators for the ATRP of methyl methacrylate. The latter procedure was carried out at 95 °C in a xylene solution with CuBr and 2,2‐bipyridine as the initiating system. The rate of the polymerization was first‐order with respect to monomer conversion. The block copolymers were characterized with 1H NMR and 13C NMR spectroscopy and size exclusion chromatography, and differential scanning calorimetry was used to obtain preliminary evidence of phase separation in the copolymer products. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 30–40, 2003  相似文献   

14.
IronIII chloride coordinated by pyromellitic acid was successfully used as the catalytic system in reverse atom transfer radical polymerization of MMA. Well-defined poly(methyl methacrylate) with narrow molecular weight distribution was synthesized in N,N-dimethylformamide at 80-110 °C. Chain extension was performed to confirm the living nature of the polymer. The presence of the end chloride atom on the resulting PMMA was demonstrated by 1HNMR spectroscopy. This catalyst system is effective for reverse ATRP of methacrylates but not for acrylates.  相似文献   

15.
A new catalytic system, FeCl3/isophthalic acid, was successfully used in the reverse atom transfer radical polymerization (RATRP) of methyl methacrylate (MMA) in the presence of a conventional radical initiator, 2,2′‐azo‐bis‐isobutyrontrile. Well‐defined poly(methyl methacrylate) (PMMA) was synthesized in an N,N‐dimethylformamide solvent at 90–120 °C. The polymerization was controlled up to a molecular weight of 50,000, and the polydispersity index was 1.4. Chain extension was performed to confirm the living nature of the polymer. The kinetics of the RATRP of MMA with FeCl3/isophthalic acid as the catalyst system was investigated. The apparent activation energy was 10.47 kcal/mol. The presence of the end chloride atom on the resulting PMMA was demonstrated by 1H NMR spectroscopy. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 765–774, 2001  相似文献   

16.
A series of (di)picolinic acids and their derivates are investigated as novel complexing tridentate or bidentate ligands in the iron‐mediated reverse atom transfer radical polymerization of methyl methacrylate in N,N‐dimethylformamide at 100 °C with 2,2′‐azobisisobutyrontrile as an initiator. The polymerization rates and polydispersity indices (1.32–1.8) of the resulting polymers are dependent on the structures of the ligands employed. Different iron complexes may be involved in iron‐mediated reverse atom transfer radical polymerization, depending on the type of acid used. 1H NMR spectroscopy has been used to study the structure of the resulting polymers. Chain‐extension reactions have been performed to further confirm the living nature of this catalytic system. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2912–2921, 2006  相似文献   

17.
The synthesis of 4-arm methyl methacrylate star polymer had been achieved successfully by atom transfer radical polymerization using CuCl as catalyst, 2, 2′-bipyridyl as ligand and pentaerythritol tetrakis (2-bromoisobutyrate) as the initiator. The star polymer was characterized by 1H-NMR and GPC, by which the precise 4-arm structure of the PMMA was confirmed. __________ Translated from Journal of Shaanxi Normal University (Natural Science Edition), 2008, 36(2) (in Chinese)  相似文献   

18.
19.
Poly(ethylene terephthalate) (PET) is a semi-crystalline thermoplastic polyester used in many fields. For a variety of applications, however, it is necessary to impart desired properties by introducing specific functional groups on the surface. A simple method for growing polymer brushes by atom transfer radical polymerization (ATRP) on PET films, fibers and fabrics was devised. The different PET surfaces were first reacted with 1,2-diaminoethane by aminolysis reaction to incorporate primary amino and alcohol functions on the surface. Then, in a second step, ATRP initiator was grafted by reaction with bromoisobutyryl bromide. The efficiency of these reactions was confirmed by using colorimetric titration and X-ray photoelectron spectroscopy (XPS). Surface-initiated ATRP was performed in bulk using styrene monomer with CuBr/PMDETA catalytic system in the presence of a sacrificial initiator (ethyl 2-bromoisobutyrate). Good control of the polymerization was obtained as attested by comparison of polystyrene molar masses obtained in solution from sacrificial initiator with those obtained from the surface after cleavage. Wetting properties were found to vary systematically depending to the type of functionalization and grafting. Evolution of surface morphology according to reaction steps was investigated using atomic force microscopy (AFM).  相似文献   

20.
Fluorinated copolymers with statistical structure of azeotropic or gradient composition were prepared from heterogeneous atom transfer radical copolymerizations of styrene (S) and 2,2,2‐trifluoroethyl methacrylate (T). The polymerization kinetic studies show that while the propagation rate constant of S increased with a decreasing S content in the comonomer feed ratio, the propagation rate of T decreased with decreases of the S content in the comonomer feed ratio. The polymerization rate and controllability of the heterogeneous ATRP of S and T were regulated by the solubility of Cu(II)/ligand in the reaction mixture, based on a mechanistic analysis and solubility tests of the Cu(II)/ligand system in the reaction media. The reactivity ratios of S and T were 0.22 and 0.35, as evaluated from kinetic analysis of monomer conversions higher than 35%. These statistical polymers self‐assembled in T to form giant vesicles GVs) with broad diameter distribution in the range of 1–10 μm. Unlike the methods normally used to prepare gradient copolymers by spontaneous controlling with feeding model or batch polymerization of comonomers with obvious differences in the reactivity ratio, in this contribution, we report a novel synthetic strategy for preparing gradient copolymers can also be prepared from both monomers with very similar reactivity ratio. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号