首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Symmetric styrene-b-styrene-co-butadiene-b-styrene (S-SB-S) tri-block copolymers with varying middle and outer block composition have been studied. We report our findings based on a systematic variation of the effective interaction parameter (χ) by adjusting the composition of the random copolymer in the middle block and of the outer blocks (in terms of PS-chain length) which allows us to explore the χ-parameter space with regard to molecular architecture more thoroughly than in SBS triblock copolymers. A variation in the S/B middle block composition or in the PS outer block content leads to a change in phase behaviour and morphology simultaneously accompanied by significant changes in mechanical properties, varying from elastomeric to thermoplastic property profile. Despite high PS contents of 55-75 wt.% these S-SB-S triblock copolymers reveal high strain at break values between 650% and 350% which is in striking contrast to the conventional SBS triblock copolymers where only about 10% strain at break have been reported to be achieved with similar PS-content (∼75 wt.%).  相似文献   

3.
The influence of middle and outer block composition of symmetric triblock copolymers consisting of a polystyrene–polybutadiene (S/B) random middle block and two polystyrene (PS) outer blocks on morphology and rheological behavior has been investigated. Master curves are obtained by shifting the experimental data measured at different temperatures using time‐temperature superposition principle, the validity of which was confirmed in the linear viscoelastic regime. The rheological properties are observed to be strongly influenced by the relative composition of the S‐SB‐S triblock copolymers. Increasing the S/B ratio from 1:1 to 1:2 in the middle block has lead to a change in morphology from wormlike to lamellar, which is also accompanied with broad and sharp tan δ peaks in the dynamic mechanical measurements, respectively. The storage and loss modulus have been observed to increase with the increase in PS contents in the outer blocks and PB content in the middle block. The triblock copolymer with wormlike structure showed terminal linear viscoelastic behavior, whereas the ones with lamellar morphology showed nonterminal flow behavior in the similar low‐frequency regime. The relaxation modulus (Gt) has been observed to increase four times when the S/B ratio is increased from 1:1 to 1:2, whereas it increases threefold when the PS‐content in the outer block was increased by just 8 wt %. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2776–2788, 2006  相似文献   

4.
The effect of steam on the micro‐phase structure and mechanical properties of different block copolymers used in biomedical devices is investigated via FT‐IR, tensile tests and dynamic mechanical analysis (DMA). Steam sterilization, commonly performed on medical devices and simulated in this work, affects the copolymers' morphology, due to high temperature and humidity conditions. FT‐IR analysis reveals that steam induces a modification in the crystalline conformations of copolymers with a pre‐existing hydrogen bonding network, that is, thermoplastic polyurethanes (TPU) and poly(ether‐block‐amide) (PEBA), while it does not significantly affect the domain conformation in styrenic block copolymers (SEBS), due to weak interaction with water. As a consequence, relevant changes of the mechanical properties, closely related to the microdomain structure, are found for TPU and PEBA after sterilization, while SEBS mechanical behavior remains stable, as demonstrated by tensile tests and DMA results. For this reason, SEBS is suggested as the best choice in terms of durability in biomedical applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1337–1346  相似文献   

5.
The idea of repulsion in random copolymers was applied to the miscibility modification between polystyrene (PS) and polyarylate (PAr) segments of PS–PAr block copolymer (PAr–PS–PAr). Acrylonitrile (AN), which has a large positive interaction parameter against styrene, was used as a miscibility modifier toward PAr segments. AN was introduced into the carboxyl terminated telechelic‐PS at AN wt % ranging from 12 to 37 wt %. Based on these telechelic acrylonitrile–styrene random copolymers (SANx's where x represents AN wt %), SANx and PAr block copolymers (PAr–SANx–PAr's) were synthesized. The miscibility of SANx and PAr segments was estimated from the results of DSC with Fox's equation and spin–spin relaxation time measured by pulsed NMR. These results evidenced that the miscibility between PS and PAr segments can be modified by introducing AN into PS segments. The estimated volume fraction of the interfacial layer between SANx and PAr segments was increased as x was increased toward 24 wt %, around which the predicted miscibility reaches a maximum. Above that AN wt %, it began to decrease. The flexural strength increased as the miscibility between SANx and PAr segments increased. In particular, when x was between 20 and 30 wt %, PAr–SANx–PAr exhibited three times larger flexural strength than PAr–PS–PAr. The fracture behavior changed from brittle to ductile, even though the telechelic SANx by themselves exhibited almost the same fracture strength as the telechelic PS. The results of dynamic mechanical measurements and the percolation model suggested that around these AN wt % the continuum matrices in PAr–SANx–PAr changed from SANx phase to a cocontinuous phase of SANx and PAr. From these results, PAr–SANx–PAr was explained to perform such a high flexural strength by this phase change in the continuum matrices. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 127–137, 2000  相似文献   

6.
Polyacrylonitrile and its copolymers with different functional monomers (itaconic acid, acrylic acid and acrylamide) were synthesized via water-phase precipitation polymerization in order to prepare molecularly imprinted polymer (MIP) membranes with recognition properties for the flavonoid naringin (NR). Membranes were prepared by phase inversion technique using dimethylformamide (DMF) as the solvent and adding naringin as template molecule to the casting solution. For comparison, membranes without template (blank) were prepared and tested. All MIP membranes showed high specific binding capacity; among them, the membrane prepared with the copolymer containing acrylamide as functional group, showed the highest binding capacity. Blank membranes only showed non-specific binding. The bound template was totally recovered and regenerated membranes maintained their initial binding capacity after reuse.  相似文献   

7.
Triblock and multiblock copolymers of methyl acrylate containing short blocks of the hydrogen bonding monomer N‐acryloyl‐l ‐phenylalanine were prepared via reversible addition–fragmentation chain transfer polymerization in two steps using a bifunctional trithiocarbonate for the triblock copolymer and a polyfunctional trithiocarbonate for the multiblock copolymer. The polymer materials were investigated via tensile testing showing that the hydrogen bonding monomer induces a pronounced increase in toughness. The toughness of the material is further enhanced when going from triblock to multiblock topology. Both types of copolymer display a very strong healing effect, with the samples' toughness (which is increased by drawing) becoming even larger after breaking and healing. Already, a very small content of only 0.1 mol % of N‐acryloyl‐l ‐phenylalanine improves the mechanical properties of these thermoplastic elastomers significantly. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2809–2819  相似文献   

8.
To improve the proton conductivity and thermal stability of proton exchange membrane, hybrid poly (arylene ether) multiblock copolymers were synthesized by using 6F-bisphenol A monomer. The hydrophobic oligomers poly (arylene ether sulfone) containing 6F-bisphenol A with varying molecular weight were copolymerised with hydrophilic oligomer disulfonated poly (arylene ether ketone) containing pendant carboxylic acid group to prepare multiblock copolymers. For further enhancing the proton conductivity, ionic liquid is embedded into the synthesized multiblock copolymers to fabricate the hybrid multiblock membranes. The 1H NMR studies confirmed the synthesis of oligomers and multiblock copolymers whereas the FT-IR spectra revealed the interaction of ionic liquid with the multiblock copolymers. The proton conductivity of the membranes has also been examined at different temperatures and the activation energy required for the proton transport was calculated by using Arrhenius equation. At 30 °C, the maximum proton conductivity of 0.14 S/cm were shown by hybrid membrane (with 50% ionic liquid, 6FB1/I.L-50%), which is of 3.5 times greater than that of pristine 6FB1 membrane. Compared with pristine membranes, the hybrid membranes exhibit improved oxidative, thermal and mechanical stability. Moreover, the scanning electron microscopy (SEM) investigation depicts better phase separation in hybrid membranes than pristine membranes by forming ionic clusters. The membranes have been tested in H2/O2 fuel cell and their performance is compared with the state-of-art Nafion 117 membrane.  相似文献   

9.
Second-order, nonlinear optical polymers based on epoxy-substituted methylvinylisocyanates and N-substituted maleimides were synthesized and characterized with spectral and thermal analysis. The photocrosslinking and thermal-crosslinking reactions of copolymers with different chromophore contents were studied. Thermally induced crosslinking during the poling process, performed at the glass-transition temperature (Tg), was prevented by Tg being decreased through the addition of a plasticizer. Electrooptic coefficients (r33), measured for crosslinked and noncrosslinked systems, had similar absolute values and relaxation dynamics. This behavior was explained in terms of the similar rotational mobility of the chromophore units and the paucity of crosslinking sites. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1589–1595, 2001  相似文献   

10.
Copolymers of phenylacetylene (PA) and p-nitrophenylacetylene (pNPA) with various monomers ratios were prepared and characterized. The solubility of copolymers is dependent on the number of PA units in the chain. They show a good degree of stereoregularity and the MW s are in the 103–105 a.m.u. range, depending on the monomers and catalyst molar ratios. The soluble samples exhibit film-forming properties and the film-surface morphology may be varied by using different solvents. The copolymers give good electrical response to relative humidity variations. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 93–102, 1998  相似文献   

11.
Blends of isotactic propylene-ran-ethylene (EP) and propylene-ran-(1-butene) (BP) copolymers with various comonomer content (2-3.1 wt.% ethylene, 9.9 wt.% 1-butene), were prepared in Brabender internal mixer at various compositions (25/75, 50/50, 75/25). Static, impact and dynamic mechanical behavior of copolymers and their blends was investigated. The crystalline structure was studied by DSC and SAXS analysis. For all copolymers the lamellar thickness, crystallinity degree and glass transition temperature are lower than those of iPP homopolymer, depending on the comonomer content. It was found that the copolymers exhibit improved impact strength as compared to plain iPP, due to lower crystallinity and higher mobility of chains within amorphous component. Moreover, the elastic modulus as well as the yield behavior of the examined samples resulted to depend primarily on the amount of the crystalline phase and the thickness of the lamellar crystals, respectively. A linear dependence of yield stress on the logarithm of reciprocal lamellar thickness was observed for blends and copolymers, supporting the concept of thermal nucleation of dislocations which control the crystallographic slip processes initiated at the yield point. The blends of BPS with either EPS or EP2 display complete miscibility in the entire range of composition and their mechanical properties are intermediate between those of plain components, changing gradually with the composition.  相似文献   

12.
The synthesis of well-defined, nearly monodispersed, 3-miktoarm (from the greek word μlkτós meaning mixed) star copolymer of the A2B type is described. A and B is either polystyrene (PS), polybutadiene (PBd), or polyisoprene (PI). The sequential controlled addition of living anionic B and A chains to methyltrichlorosilane leads to narrow molecular weight distribution miktoarm star copolymers with homogeneous composition. Characterization was carried out by size exclusion chromatography, low-angle laser light scattering, laser differential refractometry, membrane and vapor pressure osmometry, nuclear magnetic resonance and ultraviolet spectroscopy. Analysis of [η], RH and Rv of the A2B and one A2B2 miktoarm copolymers, suggests that a small expansion of the copolymer occurs either in a good solvent for both species or in a Θ solvent for one of them, as compared with the corresponding star homopolymers. This is in contrast to results obtained on linear block copolymers, and is due to the increased occurrence of heterocontacts in the miktoarm starshaped architecture. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Novel multigraft copolymers of poly(methyl methacrylate‐graft‐polystyrene) (PMMA‐g‐PS) in which the number of graft PS side chains was varied were prepared by a subsequent two‐step living radical copolymerization approach. A polymerizable 4‐vinylbezenyl 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO) monomer (STEMPO), which functioned as both a monomer and a radical trapper, was placed in a low‐temperature atom transfer radical polymerization (60°C) process of methyl methacrylate with ethyl 2‐bromopronionate (EPNBr) as an initiator to gain ethyl pronionate‐capped prepolymers with TEMPO moieties, PMMA‐STEMPOs. The number of TEMPO moieties grafted on the PMMA backbone could be designed by varying STEMPO/EPNBr, for example, the ratios of 1/2, 2/3, or 3/4 gained one, two, or three graft TEMPO moieties, respectively. The resulting prepolymers either as a macromolecular initiator or a trapper copolymerized with styrene in the control of stable free‐radical polymerization at an elevated temperature (120 °C), producing the corresponding multigraft copolymers, PMMA‐g‐PSs. The nitroxyl‐functionalized PMMA prepolymers produced a relatively high initiation efficiency (>0.8) as a result of the stereohindrance and slow diffusion of TEMPO moieties connected on the long PMMA backbone. The polymerization kinetics in two processes showed a living radical polymerization characteristic. The molecular structures of these prepolymers and graft copolymers were well characterized by combining Fourier transform infrared spectroscopy, gel permeation chromatography, chemical element analysis, and 1H NMR. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1876–1884, 2002  相似文献   

14.
Several Ziegler-Natta copolymers of iPP with ethylene or 1-butene, and terpolymers with both counits have been characterized, devoting special attention to the effect of composition and processing conditions on the crystal structure and final properties. DSC and X-ray diffraction were used to study the polymorphism of copolymers and terpolymers. Comonomer insertion interrupts the isotactic sequences, acting as a structural defect, and the formation of γ form is enhanced. Moreover, crystallinity decreases and crystal structure is modified. Comonomer type and concentration determine the extent of these modifications, resulting in important changes in macroscopic properties. In particular, the excellent optical properties of the analyzed terpolymers make them very attractive for applications such as transparent film or packaging.  相似文献   

15.
To search for more wider absorption and higher charge carriers mobilities materials of polymer solar cell, a series of soluble alternating polyfluorene copolymers were synthesized by palladium-catalyzed Suzuki coupling reaction. Their structures were determined by 1H NMR, IR and UV-vis. And their UV-vis absorption spectra indicated that they had strong absorption over 600 nm spectral range and nearly cover 400-700 nm visible region. The band gaps of copolymers calculated according to cyclic voltammetry (CV) were between 1.96 and 2.03 eV. Polymer:TiO2 bulk-heterojunction films were made from mixtures of polymer and titanium isopropoxide, a precursor for TiO2, via hydrolysis in air overnight. The photoluminescence at 380-800 nm of the blend film of PT-TPP20 (5 mg/mL):Ti(OC3H7)4 (80 μL/mL) (20% volume fraction) was significantly quenched in the 50% Ti(OC3H7)4 blend film, indicating that rapid and efficient separation of photoinduced electron-hole pairs.  相似文献   

16.
The poly(amidoamine)s (PAAs) ISA 1 and ISA 23 display pH-dependent conformational change and pH-dependent membrane perturbation. These properties confer potential for use as endosomolytic polymers for intracytoplasmic delivery of toxins and genes. Both polymers are relatively non-toxic, and moreover ISA 23 has the beneficial property in vivo, of being non hepatotropic when administered intravenously. Although ISA 23 and ISA 1 demonstrate ability to transfect cells, ISA 1 is also able to promote intracellular delivery of non-permeant toxins. The aim of this study was to synthesise random and block copolymers of ISA 1 and ISA 23 and investigate whether these second generation hybrids would allow optimisation of PAA biological characteristics. Random and block copolymers of ISA 1 and ISA 23 were synthesised by hydrogen transfer polyaddition to generate a library of PAAs with an ISA 23:ISA 1 molar ratios of 2:1 to 4:1. The resultant polymers have a pI slightly below 7.4 and a M(w) of 19,900-49,000 g/mol and a M(n) of 13,100-24,100 g/mol. Whereas none of the random or block copolymers were haemolytic at pH 7.4 all demonstrated pH-dependent membrane activity. At pH 5.5 they caused 50-60% haemoglobin (Hb) release over 1 h. This was slightly less than that seen for ISA 23 (80% Hb release). None of the copolymers were cytotoxic against B16F10 cells during a 72 h incubation (IC(50) > 2 mg/ml; MTT assay). The ability of the random and block copolymer PAAs to deliver the toxin gelonin was also examined, but only ISA 1 and the block copolymer B2 (ISA 23:ISA 1 at a 2:1 molar ratio) were able to promote intracellular delivery, as measured by cytotoxic activity. It would be interesting to study the body distribution of B2 and determine whether this toxin-delivering PAA is able to escape liver capture.  相似文献   

17.
The synthesis and characterization of dendritic homopolymers and block copolymers of ?‐caprolactone and lactide (L ‐lactide and racemic lactide) were performed with multifunctional initiators in combination with living polymerization and the selective placement of branching junctures in a divergent growth strategy. A hexahydroxy‐functional 2,2‐bis(hydroxymethyl) propionic acid derivative was used as an initiator for the stannous‐2‐ethylhexanoate‐catalyzed living ring‐opening polymerization of ?‐caprolactone, L ‐lactide, and racemic L ,D ‐lactide. Branching junctions at the chain ends were introduced with benzylidene‐protected 2,2‐bis(hydroxymethyl) propionic acid. Subsequent generations were then polymerized, after deprotection, from these star‐shaped macroinitiators. Successive chain end capping and initiation produced three generations of polymers with molecular weights in excess of 130,000 g/mol and narrow polydispersities (<1.20). It was possible to prepare diblock and triblock copolymers with phase‐separated morphologies, and with L ‐lactide or D ,L ‐lactide, semicrystalline and amorphous morphologies were demonstrated. The polymers were characterized by 1H NMR, 13C NMR, size exclusion chromatography, and differential scanning calorimetry. The compositions of the block copolymers and the conformational structures of the optically active polymers were also confirmed by optical rotation measurements. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1174–1188, 2004  相似文献   

18.
19.
Polystyrene/polybutadiene (PS/PB) blends with different plastic/rubber ratios were prepared by melt mixing. A detailed investigation on phase morphology development of 30/70 wt.% PS/PB blends as a function of processing conditions was quantitatively analyzed. Morphology is developed at the initial stages of mixing. Suitable blending conditions resulting in optimum phase morphology were obtained at 180 °C, 60 rpm and at 8 min mixing time. Phase morphologies of the blends were also studied as a function of composition. Mechanical properties of the blends were measured. Attempts were made to correlate the morphologies with the properties. Parallel-Voids model has been applied to characterize phase morphology of these blends.  相似文献   

20.
Dynamic mechanical and gas transport properties for homogeneous homopolymer blends and random copolymers of bisphenol-A and tetramethyl bisphenol-A polycarbonates (PC-TMPC) were determined. The gas transport measurements were performed at 35°C for the gases He, H2, O2, Ar, N2, CH4, and CO2. The results show that the copolymers have lower permeability, apparent diffusion, and solubility coefficients than the blends. Permeability coefficients for blends follow a semilogarithmic ideal mixing rule while copolymers exhibit negative deviations from this. Specific volume measurements show that the free volume available for gas transport is slightly larger in copolymers than in blends of the same composition. These apparently contradictory results may relate to the differences in local mode chain motions observed for the copolymer and blend series. The γ relaxation processes in PC and TMPC seem to operate independently in the blends (no intermolecular coupling) while there is clear evidence for intramolecular coupling in the copolymers. © 1992 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号