首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal behaviour of members of a homologous series which exhibits the optically isotropic cubic phase, the 4'- n -alkoxy-3'-nitrobiphenyl-4-carboxylic acids having alkoxy chains containing 16, 20 and 22 carbon atoms (referred to as ANBC-16, -20 and -22, respectively) was investigated under pressures up to 200-400 MPa by high pressure differential thermal analysis. In the phase diagram of ANBC-16 obtained on heating, a triple point was estimated at 54 ±1 MPa and 205 ±1°C for the SmC, Cub and SmA phases. It was found that the X phase is formed on cooling under all pressures, while appearing on heating at high pressures above about 54 MPa. Thus the X phase appears monotropically between the SmA and Cub phases in the low pressure region and enantiotropically between the SmA and SmC phases under higher pressures. It is strongly suggested that the X phase is a columnar mesophase. For ANBC-20 and -22, the cubic phase tends to be destabilized with increasing pressure. The temperature region of the cubic phase of ANBC-20 becomes narrower with increasing pressure and a triple point for the SmC, Cub and I phases is estimated to be at about 309 MPa. On the other hand, the cubic phase of ANBC-22 is still observed at the highest pressure examined.  相似文献   

2.
The phase behavior of an optically isotropic cubic mesogen 4'-n-hexadecyloxy-3'-nitrobiphenyl-4-carboxylic acid (ANBC-16) was investigated under hydrostatic pressures up to 200 MPa using a high-pressure DTA, a polarizing optical microscope equipped with a high-pressure hot-stage and a wide-angle X-ray diffractometer equipped with a high-pressure vessel. In the T vs. P phase diagram constructed in the heating mode, a triple point exists at 54±1 MPa and 205±1°C for the SmC, cubic, and SmA phases. A new mesophase, denoted here as X, appears in place of the cubic phase under pressures above about 60 MPa, while the X phase appears on cooling in the whole pressure region studied. Thus the X phase is a monotropic (metastable) phase between the SmA and Cub phases in the low pressure region, while being an enantiotropic phase between the SmA and SmC phases in the high pressure range. The X phase exhibits broken-fan or sand-like textures under pressure and a spot-like diffraction pattern, indicating the birefringent feature and no layered structure. It is suggested that the X phase is tetragonal or hexagonal columnar phase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
In situ observation of the optical texture, and X-ray patterns of the pressure-induced mesophase seen for 4'-n-hexadecyloxy-3'-nitrobiphenyl-4-carboxylic acid (ANBC-16) was performed under hydrostatic pressures up to 100MPa using a polarizing optical microscope equipped with a high pressure hot stage and a wide angle X-ray diffractometer equipped with a high pressure vessel respectively. It was found that the pressure-induced mesophase (hereafter refered to as 'X') appeared at pressures above 60 MPa, and exhibits a birefringent broken-fan or a sand-like texture that remain unaltered in the SmC phase. The POM-transmitted light intensity curve measured on heating clearly showed the Cr4 →Cr1 →SmC →'X' →SmA →I transition sequence at 80 MPa. The optical texture and the POM-transmitted light intensity measured during a pressure cycle at 185°C showed a reversible change between the cubic and 'X' phases. The WAXD pattern of the 'X' phase showed a spot-like pattern, suggesting no layered structure for this phase, and also revealed a substantial decrease in the d-spacing of the low angle reflection at 80 and 100 MPa, compared with the d-spacings of the (0 0 1) reflection of the SmC phase and also the (2 1 1) reflection of the cubic phase. It is concluded from these data that the 'X' phase is a birefringent hexagonal columnar phase.  相似文献   

4.
《Liquid crystals》2001,28(12):1785-1791
The phase behaviour of 4'-n-hexadecyloxy-3'-nitrobiphenyl-4-carboxylic acid (ANBC-16) was investigated under hydrostatic pressures up to 200 MPa using high pressure differential thermal analysis. The phase transition sequence crystal 4 (Cr4)-crystal 3 (Cr3)-crystal 2 (Cr2)-crystal 1 (Cr1)-smectic C (SmC)-Cubic (Cub)-smectic A (SmA)-'structured liquid' (I1)-isotropic liquid (I2) was observed for a virgin sample on heating at atmospheric pressure. The stable temperature region of the optically isotropic cubic phase becomes narrower on increasing pressure and disappears at pressures above 65 MPa. The T vs. P phase diagram exhibits the existence of a triple point (65 MPa, 207.6°C) for the cubic phase, a new mesophase (X), and the SmA phase, indicating the upper limit for the cubic phase. The new mesophase, denoted here as X, appears in place of the cubic phase at pressures above 65 MPa. The phase diagram also indicates that the Cr4-Cr3, Cr3-Cr2, and Cr2-Cr1 transition lines merge at about 40-50 MPa and then only the Cr4-Cr1 transition is observed in the solid state at higher pressures. Thus the phase transition process on heating changes from the sequence Cr4-Cr3-Cr2-Cr1-SmC-Cub-SmA-I1-I2 at atmospheric pressure to Cr4-Cr1-SmC-X-SmA-I1-I2 in the high pressure region above 65 MPa, via Cr4-Cr3-Cr2-Cr1-SmC-(X)-Cub-SmA-I1-I2 in the low pressure region.  相似文献   

5.
Complex dielectric spectroscopy (frequency range 5 Hz–13 MHz) has been used to analyse the frequency, temperature and bias‐field dependences of the molecular dynamics of a very high‐spontaneous‐polarization ferroelectric liquid crystalline material exhibiting SmA, SmC* and unknown SmX smectic phases. Different smectic phase transition temperatures have been observed from the study of the temperature dependence of the dielectric strength and the relaxation frequency. The phase transition temperatures (crystalline to isotropic phases) have also been described very accurately from the temperature‐dependent symmetric and asymmetric shape parameters of the relaxation function and also the dc conductivity. In a planar aligned cell, two symmetric modes (Goldstone mode and domain mode) have been observed in both the SmX and SmC* phases. One asymmetric mode (X‐mode) observed in the SmC* and SmA phases could be related to the interaction of dipoles of the ferroelectric liquid crystals being affected by the surface of the cell. The soft mode, which usually appears very close to the SmC*–SmA phase transition was not observed until the bias field was applied. The second order nature of the SmC*–SmA phase transition was revealed.  相似文献   

6.
In situ observation of the optical texture, and X-ray patterns of the pressure-induced mesophase seen for 4′-n-hexadecyloxy-3′-nitrobiphenyl-4-carboxylic acid (ANBC-16) was performed under hydrostatic pressures up to 100MPa using a polarizing optical microscope equipped with a high pressure hot stage and a wide angle X-ray diffractometer equipped with a high pressure vessel respectively. It was found that the pressure-induced mesophase (hereafter refered to as ‘X’) appeared at pressures above 60 MPa, and exhibits a birefringent broken-fan or a sand-like texture that remain unaltered in the SmC phase. The POM-transmitted light intensity curve measured on heating clearly showed the Cr4 → Cr1 → SmC → ‘X’ → SmA → I transition sequence at 80 MPa. The optical texture and the POM-transmitted light intensity measured during a pressure cycle at 185°C showed a reversible change between the cubic and ‘X’ phases. The WAXD pattern of the ‘X’ phase showed a spot-like pattern, suggesting no layered structure for this phase, and also revealed a substantial decrease in the d-spacing of the low angle reflection at 80 and 100 MPa, compared with the d-spacings of the (0 0 1) reflection of the SmC phase and also the (2 1 1) reflection of the cubic phase. It is concluded from these data that the ‘X’ phase is a birefringent hexagonal columnar phase.  相似文献   

7.
Dielectric properties of four recently formulated room temperature multi-component liquid crystalline mixtures with paraelectric (SmA*), ferroelectric (SmC*) and antiferroelectric (SmC*A) phases have been studied as a function of temperature and frequency. Under planer anchoring condition, dielectric spectroscopy revealed all the characteristic modes: low frequency PL and high frequency PH mode in SmC*A phase, Goldstone mode (GM) in SmC* phase and soft mode (SM) in SmA* phase. Dielectric behaviour has also been studied under the application of DC bias electric field. With bias electric field, we have been able to study the soft mode dielectric behaviour in the SmC* phase. An unknown high frequency mode (X-mode) with and without bias is also observed in SmC* phase. Dielectric results are explained in the light of generalised Landau theory. The mixtures show very high soft mode electroclinic coefficient in the SmA* phase in addition to fast switching in SmC*A and SmC* phases [30].  相似文献   

8.
《Liquid crystals》1997,23(1):77-86
The spontaneous polarization and dielectric properties of a new antiferroelectric liquid crystal (AFLC) exhibiting several intermediate phases between the SmCA and SmC* phases are investigated. A low frequency ferri Goldstone mode and a higher frequency ferro Goldstone mode have been observed over a certain range of temperatures. The effect of d.c. bias voltage on these modes is examined. The results confirm the existence of an FiLC phase with q 1/2 between SmCgamma and SmC*. These also show the co-existence of the FiLC phase with SmC* over a narrow range of temperatures above the FiLC phase. The phase sequence for this material is found to contain SmCA, SmCgamma, FiLC, (FiLC coexisting with SmC*), SmC*, SmA phases on heating and SmA- SmC* SmCgamma- SmCA- phases on cooling.  相似文献   

9.
Complex dielectric spectroscopy (frequency range 5 Hz-13 MHz) has been used to analyse the frequency, temperature and bias-field dependences of the molecular dynamics of a very high-spontaneous-polarization ferroelectric liquid crystalline material exhibiting SmA, SmC* and unknown SmX smectic phases. Different smectic phase transition temperatures have been observed from the study of the temperature dependence of the dielectric strength and the relaxation frequency. The phase transition temperatures (crystalline to isotropic phases) have also been described very accurately from the temperature-dependent symmetric and asymmetric shape parameters of the relaxation function and also the dc conductivity. In a planar aligned cell, two symmetric modes (Goldstone mode and domain mode) have been observed in both the SmX and SmC* phases. One asymmetric mode (X-mode) observed in the SmC* and SmA phases could be related to the interaction of dipoles of the ferroelectric liquid crystals being affected by the surface of the cell. The soft mode, which usually appears very close to the SmC*-SmA phase transition was not observed until the bias field was applied. The second order nature of the SmC*-SmA phase transition was revealed.  相似文献   

10.
Anomalous dielectric relaxation behaviour is observed in the ferroelectric liquid crystalline polymer (viz. ferroelectric copolysiloxane (R)-COPS 11-10) around the ferroelectric SmC* to paraelectric SmA phase transition. Measurements have been performed on sample of thickness ~10 mum in indium-tin-oxide coated cell in the frequency range 10 Hz to 13 MHz. With increase of temperature, a gradual shift of the soft mode frequency towards the higher frequency side was observed, while a decrease in the relaxation strength was seen with the corresponding increase in temperature. The shifts of the soft modes in the SmC* and SmA phase are considered to be due to change in the viscosity of the polymer, as an increase in viscosity increases fluctuations of the coupling between the dipoles in the network even far from the paraelectric-ferroelectric phase transition. Application of a bias field causes a shift of the critical frequency towards the higher frequency side, while the dielectric strength ( Δε) decreases under the bias field. The Cole-Cole fitting parameters obtained from the best fit of the dielectric constant data are found to be consistent with other similar materials. Another relaxation mode (molecular mode) was also observed which comes into play in both the smectic phases (SmC* and SmA) and contributes to the dielectric permittivity.  相似文献   

11.
Frequency- and temperature-dependent dielectric and switching parameters of a room temperature tri-component antiferroelectric liquid crystal mixture W-287 have been determined. Dielectric, optical texture and thermodynamic studies show wide room temperature range antiferroelectric SmC*a (?91.1°C to <–25°C) phase in addition to high temperature paraelectric SmA* (?2.6°C) and ferroelectric SmC* (?4.4°C) phases. The dielectric studies carried out in the frequency range of 1–35 MHz under planar anchoring condition of the molecules show five different relaxation modes appearing in the SmA*, SmC* and SmC*a phases. Using Curie–Weiss law fit, ferroelectric SmC* to paraelectric SmA* transition temperature has been found to be 91.8°C. The dielectric response of SmC*a phase exhibits unusually three relaxation modes due to collective as well as individual molecular processes in addition to phason mode in the SmC* phase and amplitudon mode in the SmA* phase. Spontaneous polarisation, switching time and rotational viscosity have also been determined. The maximum value of PS is ?300 nC/cm2, whereas viscosity is moderate. Switching time is of the order of few milli seconds.  相似文献   

12.
Two new chiral alcohols, 2(S)‐[2(R)‐methylhexyloxy]propanol ( 5 ) and 2(S)‐[2(S)‐methylhexyloxy]propanol ( 6 ), were prepared from the corresponding propionic acid ethyl ester 1 and 2 in the presence of sodium borohydride. They were used as the chiral moiety for the synthesis of two diastereomeric liquid crystals 7 and 8 . Both of them exhibit the phase sequence I‐SmA‐SmC*‐SmX‐Cr. The mesogenic properties of the (S,S)‐diastereomer 8 are more unique in comparison with those of the (S,R)‐diastereomer 7. It possesses not only lower SmA and SmC* phase transition temperature, 103 °C vs. 112 °C for SmA phase and 31 °C vs. 65 °C for SmC* phase, but wider SmA and SmC* phase range, 40 °C vs. 31 °C for SmA phase and 72 °C vs. 47 °C for SmC* phase. The diastereomer 8 also has a larger Ps value than that of 7, 24 vs. 15 nC cm?2 measured at Tc ‐ T = 10 °C. The difference in these mesogenic properties is discussed by comparing their conformation difference at the molecular part of benzoate.  相似文献   

13.
New compound showing a direct SmA*–SmCA* phase transition was synthesised. As far as authors know there are a few pure compounds showing para- and antiferroelectric phases without SmC* between them. Direct current (DC) field applied into a planar-oriented cell induces ferroelectric SmC* phase in an investigated compound. Typical for SmC*, Goldstone mode starts to be detectable. DC field also shifts down the temperature of a SmCA* phase creation. Moreover, modes in the appearing antiferroelectic phase are enhanced by DC field. This paper shows and discusses relations between modes detected in SmA*, SmCA* and SmC* (SmC* phase – nucleated by DC field) phases. Parameters of observed modes are calculated using the Cole–Cole relaxation model and a calculation procedure useful especially for high frequency relaxations (higher than 200 kHz).  相似文献   

14.
We examine the influence of an alternating-current electric field on the lamellar smectic C (SmC) phase of 4'-n-docosyloxy-3'-nitrobiphenyl-4-carboxylic acid, and the formation of a field-induced cubic (Cub) phase with optical isotropy was observed for the first time. The induction was realized down to a temperature 10 K below the zero-field SmC to Cub phase transition temperature (TSmC-Cub). The formation of the induced Cub phase gave rise to a gradual increase of the shear storage modulus, and the modulus recovered quickly in response to the removal of the field, which is of interest as future applications to the stress transferring device.  相似文献   

15.
Anomalous dielectric relaxation behaviour is observed in the ferroelectric liquid crystalline polymer (viz. ferroelectric copolysiloxane (R)-COPS 11-10) around the ferroelectric SmC* to paraelectric SmA phase transition. Measurements have been performed on sample of thickness ~10 μm in indium-tin-oxide coated cell in the frequency range 10 Hz to 13 MHz. With increase of temperature, a gradual shift of the soft mode frequency towards the higher frequency side was observed, while a decrease in the relaxation strength was seen with the corresponding increase in temperature. The shifts of the soft modes in the SmC* and SmA phase are considered to be due to change in the viscosity of the polymer, as an increase in viscosity increases fluctuations of the coupling between the dipoles in the network even far from the paraelectric-ferroelectric phase transition. Application of a bias field causes a shift of the critical frequency towards the higher frequency side, while the dielectric strength (δε) decreases under the bias field. The Cole-Cole fitting parameters obtained from the best fit of the dielectric constant data are found to be consistent with other similar materials. Another relaxation mode (molecular mode) was also observed which comes into play in both the smectic phases (SmC% and SmA) and contributes to the dielectric permittivity.  相似文献   

16.
The phase behaviour of 4'-n-hexadecyloxy-3'-nitrobiphenyl-4-carboxylic acid (ANBC-16) was investigated under hydrostatic pressures up to 200 MPa using high pressure differential thermal analysis. The phase transition sequence crystal 4 (Cr4)-crystal 3 (Cr3)-crystal 2 (Cr2)-crystal 1 (Cr1)-smectic C (SmC)-Cubic (Cub)-smectic A (SmA)-'structured liquid' (I1)-isotropic liquid (I2) was observed for a virgin sample on heating at atmospheric pressure. The stable temperature region of the optically isotropic cubic phase becomes narrower on increasing pressure and disappears at pressures above 65 MPa. The T vs. P phase diagram exhibits the existence of a triple point (65 MPa, 207.6°C) for the cubic phase, a new mesophase (X), and the SmA phase, indicating the upper limit for the cubic phase. The new mesophase, denoted here as X, appears in place of the cubic phase at pressures above 65 MPa. The phase diagram also indicates that the Cr4-Cr3, Cr3-Cr2, and Cr2-Cr1 transition lines merge at about 40-50 MPa and then only the Cr4-Cr1 transition is observed in the solid state at higher pressures. Thus the phase transition process on heating changes from the sequence Cr4-Cr3-Cr2-Cr1-SmC-Cub-SmA-I1-I2 at atmospheric pressure to Cr4-Cr1-SmC-X-SmA-I1-I2 in the high pressure region above 65 MPa, via Cr4-Cr3-Cr2-Cr1-SmC-(X)-Cub-SmA-I1-I2 in the low pressure region.  相似文献   

17.
We studied the electro-optic and dielectric properties of three pure ferroelectric liquid crystal materials (C10, C11 and C12) of the same series exhibiting cholesteric (N*), smectic A (SmA) and chiral smectic C (SmC*) phases. From electro-optic investigations, the tilt angle and spontaneous polarisation were determined as a function of temperature. In the dielectric measurements carried out without a dc bias field, we studied the soft-mode relaxation in the SmA phase. From experimental data and using the results of a Landau model, we evaluated the soft-mode rotational viscosity and the electroclinic coefficient in the SmA phase. A soft-mode like mechanism was also observed in the N* phase for compounds with shorter chains (C10 and C11). This relaxation process is not detected for the homologue with a longer chain (C12). The observation of this mechanism is related to smectic order fluctuations within N* phase whose amplitude is increased when approaching the SmC*–SmA–N* multicritical point.  相似文献   

18.
The phase behaviour of the binary systems 4'-n-tetradecyloxy-3'-nitrobiphenyl-4-carboxylic acid (ANBC-14)-n-alkane (n-tetradecane or n-hexadecane) was investigated by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. The phase behaviour was a function of temperature (T) and the effective carbon number of the system (n*), where n* involves carbon atoms both from the alkoxy group of ANBC-14 and from the n-alkane added. ANBC-14 shows no cubic phase, but the addition of n-alkane induced cubic phases when n*≧c. 15. An interesting point is that the type of cubic phase is Ia3d for 15n*≦17, while an Im3m type is formed for 18n*≦20. Furthermore, for n* = 22, two types of cubic phase, one with Im3m symmetry in the low temperature region and the other with Ia3d in the high temperature region, were observed both on heating and cooling. The phase diagram with respect to T and n* is very similar to that of pure one-component ANBC-n, which is a function of T and the number of carbon atoms in the alkoxy group n.  相似文献   

19.
Polarizing microscope textures of the twist grain boundary A* (TGBA*) phase are reviewed for two different compounds in different geometries with different surface treatments giving monostable planar and homeotropic boundary conditions. The textures are discussed in the light of the helical structure of the TGBA* phase. Depending on the compound, the underlying phase is either SmA* or SmC*, whereas the adjacent phase at higher temperature is cholesteric (N*). Sample preparations in wedge-shaped cells subjected to a slight temperature gradient exhibit TGBA* textures much more typical for the cholesteric than for the ordinary SmA* phase. For instance, Grandjean steps and fingerprint textures are observed for planar and homeotropic boundary conditions, respectively. Preparation of smectic droplets clearly reveals the helical axis of the TGBA* phase to be perpendicular to the helical axis of the helielectric SmC* phase. For thin samples, a suppression of the TGBA* helix leading to a surface-induced structure corresponding to a conventional bulk SmA* phase is observed. Under certain conditions, a cholesteric phase in the vicinity of a twist inversion point may exhibit very similar textures to the TGBA* phase near the transition to the SmA* phase. On exemplified textures similarities are discussed and differences pointed out.  相似文献   

20.
Collective relaxation processes are completely undetectable in a ferroelectric liquid crystal confined in porous Anopore membranes, as a result of perfect orientation of the smectic layers perpendicular both to the long axis of the pores and the direction of the measuring electric field. In the ferroelectric liquid crystal – Anopore composite only one relaxation process, assigned to rotation of the molecule around the molecular short axis, appears throughout all smectic phases. The temperature dependence of the relaxation frequency and of the dielectric strength of this process also shows no irregularity at the point of polarization sign reversal. The temperature dependence of the relaxation frequency follows the Arrhenius law with an activation energy slightly higher in the ferroelectric SmC* phase. Analysis of the non‐linear changes of temperature dependence of the dielectric strength at the SmA–SmC* phase transition enables one to obtain the temperature dependence of the tilt angle of the molecules in the SmC* phase in the Anopore membrane. Dielectric measurements confirm the existence of the tilted smectic phase in Anopore cylindrical channels with no tilt anomaly at the point of polarization sign reversal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号