首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endohedral metallofullerenes (EMFs) are able to encapsulate up to four metal atoms. In EMFs, metal atoms are positively charged because of the electron transfer from the endohedral metal atoms to the carbon cage. It results in the strong Coulomb repulsion between the positively charged ions trapped in the confined inner space of the fullerene. At the same time, in many EMFs, such as Lu(2)@C(76), Y(2)@C(79)N, M(2)@C(82) (M = Sc, Y, Lu, etc.), Y(3)@C(80), or Sc(4)O(2)@C(80), metals do not adopt their highest oxidation states, thus yielding a possibility of the covalent metal-metal bonding. In some other EMFs (e.g., La(2)@C(80)), metal-metal bonding evolves as the result of the electrochemical or chemical reduction, which leads to the population of the metal-based LUMO with pronounced metal-metal bonding character. This article highlights different aspects of the metal-metal bonding in EMFs. It is concluded that the valence state of the metal atoms in dimetallofullerenes is not dependent on their third ionization potential, but is determined by their ns(2)(n- 1)d(1)→ns(1)(n- 1)d(2) excitation energies. Peculiarities of the metal-metal bonding in EMFs are described in terms of molecular orbital analysis as well as topological approaches such as Quantum Theory of Atoms in Molecules and Electron Localization Function. Interplay of Coulomb repulsion and covalent bonding is analyzed in the framework of the Interacting Quantum Atom approach.  相似文献   

2.
Density functional theory calculations have been used to investigate the structure and bonding of the d(3)d(3) bioctahedral complexes X(3)V(mu-S(CH(3))(2))(3)VX(3)(2)(-) (X = F(-), Cl(-), OH(-), SH(-), NH(2)(-)). According to geometry optimizations using the broken-symmetry approach and the VWN+B-LYP combination of density functionals, the halide-terminated complexes have a V-V bond order of approximately 2, while complexes featuring OH(-), SH(-), or NH(2)(-) as terminal ligands exhibit full triple bonding between the vanadium atoms. The tendency toward triple bonding in the latter complexes is consistent with an increased covalency of the vanadium-ligand bonds, and the influence of bond covalency is apparent also in the tendency for V-V bond elongation in the complexes with OH(-) and NH(2)(-) terminal ligands. Detailed examination of the composition of molecular orbitals in all of the thioether-bridged V(II) complexes substantiates the conclusion that the strong antiferromagnetic coupling which we have determined for these complexes (-J > 250 cm(-)(1)) is due to direct bonding between metal atoms rather than superexchange through the bridging ligands. As such, these V(II) complexes comprise the first apparent examples of multiple metal-metal bonding in first-transition-row, face-shared dinuclear complexes and are therefore of considerable structural and synthetic interest.  相似文献   

3.
From the reactions of Cp*ZrCl(3) with 3 equiv. of LiBH(3)R (R = CH(3), Ph), the organotrihydroborate complexes, Cp*Zr(BH(3)CH(3))(3), 1, and Cp*Zr(BH(3)Ph)(3), 2, were isolated. One of the Zr-H-B bonding interactions in 2 could be described as an intermediate case between the bidentate and tridentate modes. Reactions of and Cp*Zr(BH(4))(3), 3, with Lewis acid B(C(6)F(5))(3) in diethyl ether produced the novel 14-electron ionic compounds [(micro(3)-O)(micro(2)-OC(2)H(5))(3){(Cp*Zr(OC(2)H(5)))(2)(BCH(3))}][HB(C(6)F(5))(3)], 4, and [(micro(3)-O)(micro(2)-OC(2)H(5))(3){(Cp*Zr(OC(2)H(5)))(2)(BOC(2)H(5))}][HB(C(6)F(5))(3)], 5, respectively. These two unique compounds resulted from a sequential cleavage of Zr-H-B bonds of 1 and 3 and C-O bonds of ether followed by the formation of O-B bonds. The solid state single crystal X-ray analyses revealed that both compounds have similar structures. A micro(3)-oxygen bridges two zirconiums and a boron atom. The latter three atoms are further connected by three micro(2)-bridging ethoxy groups giving rise to three four-membered metallacycles within the structure of each cation.  相似文献   

4.
The electronic structure and metal-metal bonding in the classic d(7)d(7) tetra-bridged lantern dimer [Pt(2)(O(2)CCH(3))(4)(H(2)O)(2)](2+) has been investigated by performing quasi-relativistic Xalpha-SW molecular orbital calculations on the analogous formate-bridged complex. From the calculations, the highest occupied and lowest unoccupied metal-based levels are delta(Pt(2)) and sigma(Pt(2)), respectively, indicating a metal-metal single bond analogous to the isoelectronic Rh(II) complex. The energetic ordering of the main metal-metal bonding levels is, however, quite different from that found for the Rh(II) complex, and the upper metal-metal bonding and antibonding levels have significantly more ligand character. As found for the related complex [W(2)(O(2)CH)(4)], the inclusion of relativistic effects leads to a further strengthening of the metal-metal sigma bond as a result of the increased involvement of the higher-lying platinum 6s orbital. The low-temperature absorption spectrum of [Pt(2)(O(2)CCH(3))(4)(H(2)O)(2)](2+) is assigned on the basis of Xalpha-SW calculated transition energies and oscillator strengths. Unlike the analogous Rh(II) spectrum, the visible and near-UV absorption spectrum is dominated by charge transfer (CT) transitions. The weak, visible bands at 27 500 and 31 500 cm(-)(1) are assigned to Ow --> sigma(Pt(2)) and OAc --> sigma(Pt(2)) CT transitions, respectively, although the donor orbital in the latter transition has around 25% pi(Pt(2)) character. The intense near-UV band around 37 500 cm(-)(1) displays the typical lower energy shift as the axial substituents are changed from H(2)O to Cl and Br, indicative of significant charge transfer character. From the calculated oscillator strengths, a number of transitions, mostly OAc --> sigma(Pt-O) CT in nature, are predicted to contribute to this band, including the metal-based sigma(Pt(2)) --> sigma(Pt(2)) transition. The close similarity in the absorption spectra of the CH(3)COO(-), SO(4)(2)(-), and HPO(4)(2)(-) bridged Pt(III) complexes suggests that analogous spectral assignments should apply to [Pt(2)(SO(4))(4)(H(2)O)(2)](2)(-) and [Pt(2)(HPO(4))(4)(H(2)O)(2)](2)(-). Consequently, the anomalous MCD spectra reported recently for the intense near-UV band in the SO(4)(2)(-) and HPO(4)(2)(-) bridged Pt(III) complexes can be rationalized on the basis of contributions from either SO(4) --> sigma(Pt-O) or HPO(4) --> sigma(Pt-O) CT transitions. The electronic absorption spectrum of [Rh(2)(O(2)CCH(3))(4)(H(2)O)(2)] has been re-examined on the basis of Xalpha-SW calculated transition energies and oscillator strengths. The intense UV band at approximately 45 000 cm(-)(1) is predicted to arise from several excitations, both metal-centered and CT in origin. The lower energy shoulder at approximately 40 000 cm(-)(1) is largely attributed to the metal-based sigma(Rh(2)) --> sigma(Rh(2)) transition.  相似文献   

5.
Thiolate-protected gold nanoparticles have been found recently to be coordinated by the so-called "staple" bonding motifs, consisting of quasi-linear [RS-Au-SR] and V-shaped [RS-Au-(SR)-Au-SR] units, which carry a negative charge formally. Using photoelectron spectroscopy (PES) in conjunction with ab initio calculations, we have investigated the electronic structure and chemical bonding of the simplest staples with R = CH(3): Au(SCH(3))(2)(-) and Au(2)(SCH(3))(3)(-), which were produced by electrospray ionization. PES data of the two Au-thiolate complexes are obtained both at room temperature (RT) and 20 K. The temperature-dependent study reveals significant spectral broadening at RT, in agreement with theoretical predictions of multiple conformations due to the different orientations of the -SCH(3) groups. The Au-S bonds in Au(n)(SCH(3))(n+1)(-) (n = 1, 2) are shown to be covalent via a variety of chemical bonding analyses. The strong Au-thiolate bonding and the stability of the Au-thiolate complexes are consistent with their ubiquity as staples for gold nanoparticles and on gold surfaces.  相似文献   

6.
Of the known trinuclear dipyridylamido complexes of the first-row transition metals, M(3)(dpa)(4)Cl(2) (dpa is the anion of di(2-pyridyl)amine, M = Cr, Co, Ni, Cu), the one-electron-oxidation products of only Cr(3)(dpa)(4)Cl(2) and Co(3)(dpa)(4)Cl(2) have been isolated previously. Here we report one-electron-oxidation products of Ni(3)(dpa)(4)Cl(2) (1) and Cu(3)(dpa)(4)Cl(2) (3): Ni(3)(dpa)(4)(PF(6))(3) (2) and [Cu(3)(dpa)(4)Cl(2)]SbCl(6) (4). While there are no Ni-Ni bonds in 1, the Ni-Ni distances in 2 are 0.15 A shorter than those in 1, very suggestive of metal-metal bonding interactions. In contrast, the oxidation of 3 to 4 is accompanied by a lengthening of the Cu-Cu distances, as expected for an increase in electrostatic charge between positively charged nonbonded metal ions, which is further evidence against Cu-Cu bonding in either 3 or 4. A qualitative model of the electronic structures of all [M(3)(dpa)(4)Cl(2)](n+) (n = 0, 1) compounds is presented and discussed.  相似文献   

7.
The thermally unstable compound [Hg[P(C(6)F(5))(2)](2)] was obtained from the reaction of mercury cyanide and bis(pentafluorophenyl)phosphane in DMF solution and characterized by multinuclear NMR spectroscopy. The thermally stable trinuclear compounds [Hg[(mu-P(CF(3))(2))W(CO)(5)](2)] and [Hg[(mu-P(C(6)F(5))(2))W(CO)(5)](2)] are isolated and completely characterized. The higher order NMR spectra exhibiting multinuclear satellite systems have been sufficiently analyzed. [Hg[(mu-P(CF(3))(2))W(CO)(5)](2)].2DMF crystallizes in the monoclinic space group C2/c with a = 2366.2(3) pm, b = 1046.9(1) pm, c = 104.0(1) pm, and beta = 104.01(1) degrees. Structural, NMR spectroscopic, and vibrational data prove a weak coordination of the two DMF molecules. Structural, vibrational, and NMR spectroscopic evidence is given for a successive weakening of the pi back-bonding effect of the W-P bond in the order [W(CO)(5)PH(R(f))(2)], [Hg[(mu-P(R(f))(2))W(CO)(5)](2)], and [W[P(R(f))(2)](CO)(5)](-) with R(f) = C(6)F(5) and CF(3). The pi back-bonding effect of the W-C bonds increases vice versa.  相似文献   

8.
Density functional and multiconfigurational (ab initio) calculations have been performed on [M(2)X(8)](2-) (X = Cl, Br, I) complexes of 4d (Mo, Tc, Ru), 5d (W, Re, Os), and 5f (U, Np, Pu) metals in order to investigate general trends, similarities and differences in the electronic structure and metal-metal bonding between f-block and d-block elements. Multiple metal-metal bonds consisting of a combination of sigma and pi interactions have been found in all species investigated, with delta-like interactions also occurring in the complexes of Tc, Re, Np, Ru, Os, and Pu. The molecular orbital analysis indicates that these metal-metal interactions possess predominantly d(z2) (sigma), d(xz) and d(yz) (pi), or d(xy) and d(x2-y2) (delta) character in the d-block species, and f(z3) (sigma), f(z2x) and f(z2y) (pi), or f(xyz) and f(z) (delta) character in the actinide systems. In the latter, all three (sigma, pi, delta) types of interaction exhibit bonding character, irrespective of whether the molecular symmetry is D(4h) or D(4d). By contrast, although the nature and properties of the sigma and pi bonds are largely similar for the D(4h) and D(4d) forms of the d-block complexes, the two most relevant metal-metal delta-like orbitals occur as a bonding and antibonding combination in D(4h) symmetry but as a nonbonding level in D(4d) symmetry. Multiconfigurational calculations have been performed on a subset of the actinide complexes, and show that a single electronic configuration plays a dominant role and corresponds to the lowest-energy configuration obtained using density functional theory.  相似文献   

9.
In a search for more hydrocarbon solvent soluble derivatives of the parent ligand, 2,6-[Ph(2)P(O)CH(2)](2)C(5)H(3)NO (1a), a series of new ligands, 2,6-[R(2)P(O)CH(2)](2)C(5)H(3)NO [R = Bz (1b); Tol (1c); Et (1d); Pr (1e); Bu (1f); Pn (1g); Hx (1h); Hp (1i); and Oct (1j)] and 2,6-[RR'P(O)CH(2)](2)C(5)H(3)NO [R = Ph, R' = Bz (2a); R = Ph, R' = Me (2b); R = Ph, R' = Hx (2c); R = Ph, R' = Oct (2d)], have been prepared by either Arbusov or Grignard substitutions on 2,6-bis(chloromethyl)pyridine followed by N-oxidation. The new ligands have been characterized by spectroscopic methods, and their coordination chemistry with selected lanthanide ions has been surveyed. Several 1:1 and 2:1 ligand/metal complexes have been isolated, and single-crystal X-ray diffraction analyses for Nd(2a)(NO(3))(3), Er(2a)(NO(3))(3), Yb(1d)(NO(3))(3), and [Nd(1c)(2)](NO(3))(3) are described. The new structural data are discussed in relation to the structures of complexes formed by 1a.  相似文献   

10.
11.
Quantum-chemical calculations with DFT (BP86) and ab initio methods [MP2, SCS-MP2, CCSD(T)] have been carried out for the molecules C(PH(3))(2) (1), C(PMe(3))(2) (2), C(PPh(3))(2) (3), C(PPh(3))(CO) (4), C(CO)(2) (5), C(NHC(H))(2) (6), C(NHC(Me))(2) (7) (Me(2)N)(2)C=C=C(NMe(2))(2) (8), and NHC (9), where NHC=N-heterocyclic carbene and NHC(Me)=N-methyl-substituted NHC. The electronic structure in 1-9 was analyzed with charge- and energy-partitioning methods. The results show that the bonding situations in L(2)C compounds 1-8 can be interpreted in terms of donor-acceptor interactions between closed-shell ligands L and a carbon atom which has two lone-pair orbitals L-->C<--L. This holds particularly for the carbodiphosphoranes 1-3 where L=PR(3), which therefore are classified as divalent carbon(0) compounds. The NBO analysis suggests that the best Lewis structures for the carbodicarbenes 6 and 7 where L is a NHC ligand have C==C==C double bonds as in the tetraaminoallene 8. However, the Lewis structures of 6-8, in which two lone-pair orbitals at the central carbon atom are enforced, have only a slightly higher residual density. Visual inspection of the frontier orbitals of the latter species reveals their pronounced lone-pair character, which suggests that even the quasi-linear tetraaminoallene 8 is a "masked" divalent carbon(0) compound. This explains the very shallow bending potential of 8. The same conclusion is drawn for phosphoranylketene 4 and for carbon suboxide (5), which according to the bonding analysis have hidden double-lone-pair character. The AIM analysis and the EDA calculations support the assignment of carbodiphosphoranes as divalent carbon(0) compounds, while NHC 9 is characterized as a divalent carbon(II) compound. The L-->C((1)D) donor-acceptor bonds are roughly twice as strong as the respective L-->BH(3) bond.  相似文献   

12.
Density functional theory (DFT) calculations have been used to investigate the d(3)d(3) bioctahedral complexes, MM'Cl(9)(5-), of the vanadium triad. Broken-symmetry calculations upon these species indicate that the V-containing complexes have optimized metal-metal separations of 3.4-3.5 A, corresponding to essentially localized magnetic electrons. The metal-metal separations in these weakly coupled dimers are elongated as a consequence of Coulombic repulsion, which profoundly influences (and destabilizes) the gas-phase structures for such dimers; nevertheless, the intermetallic interactions in the V-containing dimers involve significantly greater metal-metal bonding character than in the analogous Cr-containing dimers. These observations all show good agreement with existing experimental (solid state) results for the chloride-bridged, face-shared dimers V(2)Cl(9)(5-) and V(2)Cl(3)(thf)(6)(+). In contrast to the V-containing dimers, complexes featuring only Nb and Ta have much shorter intermetallic distances (approximately 2.4 A) consistent with d-electron delocalization and formal metal-metal triple bond formation; again, good agreement is found with available experimental data. Calculations on the complexes V(2)(mu-Cl)(3)(dme)(6)(+), Nb(2)(mu-dms)(3)Cl(6)(2-), and Ta(2)(mu-dms)(3)Cl(6)(2-), which are closely related to compounds for which crystallographic structural data exist, have been pursued and provide an insight into the intermetallic interactions in the experimentally characterized complexes. Analysis of the contributions from d-orbital overlap (E(ovlp)) stabilization, as well as spin polarization (exchange) stabilization of localized d electrons (E(spe)), has also been attempted for the MM'Cl(9)(5-) dimers. While E(ovlp) clearly dominates over E(spe) as a stabilizing factor in those dimers containing only Nb and Ta metal atoms, detailed assessment of the competition between E(ovlp) and E(spe) for V-containing dimers is obstructed by the instability of triply bonded V-containing dimers against Coulombic explosion. On the basis of the periodic trends in E(ovlp) versus E(spe), the V-triad dimers have a greater propensity for metal-metal bonding than do their Cr-triad or Mn-triad counterparts.  相似文献   

13.
The first binuclear sandwich-like complexes based on the aromatic tetraatomic species with formula M(2)(η(4)-E(4))(2) (M = Al, Ga; E = N, P, As) have been studied by density functional theory (DFT). The stable conformer for each M(2)(η(4)-E(4))(2) is the staggered one with D(4d) symmetry except for Ga(2)(η(2)-N(4))(2) with C(2v) symmetry. Natural bonding orbital (NBO) analysis indicates that the metal-metal bonds of Al(2)(η(4)-E(4))(2) (E = N, P, As) and Ga(2)(η(4)-E(4))(2) (E = P, As) are all σ single bonds, which are derived mostly from the s and p(z) orbitals of the metal atoms by molecular orbital (MO) analysis. For M(2)(η(4)-E(4))(2) (M = Al, Ga; E = P, As), the metal-ligand interactions are covalent, while for Al(2)(η(4)-N(4))(2) the interactions between the Al atoms and the N(4)(2-) ligands are ionic. According to the calculated dissociation energies for breaking metal-metal bonds, the Al-Al and Ga-Ga bonds are very strong indicating that these stable sandwich-like compounds Al(2)(η(4)-E(4))(2) (E = N, P, As) and Ga(2)(η(4)-E(4))(2) (E = P, As) may be synthesized in future experiments. The nitrogen-rich compounds Al(2)(η(4)-N(4))(2) and Ga(2)(η(2)-N(4))(2) may be used as potential candidates of high energy density materials (HEDMs). Nucleus-independent chemical shifts (NICS) values reveal that the E(4)(2-) rings in the Al(2)(η(4)-E(4))(2) (E = N, P, As) and Ga(2)(η(4)-E(4))(2) (E = P, As) species possess conflicting aromaticity (σ antiaromaticity and π aromaticity) and with the same ligands, the E(4)(2-) ligands in Ga(2)(η(4)-E(4))(2) have more aromaticity than those in Al(2)(η(4)-E(4))(2).  相似文献   

14.
The self-assembly of complex cationic structures by combination of cis-blocked square planar palladium(II) or platinum(II) units with bis(pyridyl) ligands having bridging amide units has been investigated. The reactions have yielded dimers, molecular triangles, and polymers depending primarily on the geometry of the bis(pyridyl) ligand. In many cases, the molecular units are further organized in the solid state through hydrogen bonding between amide units or between amide units and anions. The molecular triangle [Pt(3)(bu(2)bipy)(3)(mu-1)(3)](6+), M = Pd or Pt, bu(2)bipy = 4,4'-di-tert-butyl-2,2'-bipyridine, and 1 = N-(4-pyridinyl)isonicotinamide, stacks to give dimers by intertriangle NH.OC hydrogen bonding. The binuclear ring complexes [[Pd(LL)(mu-2)](2)](CF(3)SO(3))(4), LL = dppm = Ph(2)PCH(2)PPh(2) or dppp = Ph(2)P(CH(2))(3)PPh(2) and 2 = NC(5)H(4)-3-CH(2)NHCOCONHCH(2)-3-C(5)H(4)N, form transannular hydrogen bonds between the bridging ligands. The complexes [[Pd(LL)(mu-3)](2)](CF(3)SO(3))(4), LL = dppm or dppp, L = PPh(3), and 3 = N,N'-bis(pyridin-3-yl)-pyridine-2,6-dicarboxamide, and [[Pd(LL)(mu-4)](2)](CF(3)SO(3))(4), LL = dppm, dppp, or bu(2)bipy, L = PPh(3), and 4 = N,N'-bis(pyridin-4-yl)-pyridine-2,6-dicarboxamide, are suggested to exist as U-shaped or square dimers, respectively. The ligands N,N'-bis(pyridin-3-yl)isophthalamide, 5, or N,N'-bis(pyridin-4-yl)isophthalamide, 6, give the complexes [[Pd(LL)(mu-5)](2)](CF(3)SO(3))(4) or [[Pd(LL)(mu-6)](2)](CF(3)SO(3))(4), but when LL = dppm or dppp, the zigzag polymers [[Pd(LL)(mu-6)](x)](CF(3)SO(3))(2)(x) are formed. When LL = dppp, a structure determination shows formation of a laminated sheet structure by hydrogen bonding between amide NH groups and triflate anions of the type NH-OSO-HN.  相似文献   

15.
The bonding situation of homonuclear and heteronuclear metal-metal multiple bonds in R(3)M-M'R(3) (M, M' = Cr, Mo, W; R = Cl, NMe(2)) is investigated by density functional theory (DFT) calculations, with the help of energy decomposition analysis (EDA). The M-M' bond strength increases as M and M' become heavier. The strongest bond is predicted for the 5d-5d tungsten complexes (NMe(2))(3)W-W(NMe(2))(3) (D(e) = 103.6 kcal/mol) and Cl(3)W-WCl(3) (D(e) = 99.8 kcal/mol). Although the heteronuclear molecules with polar M-M' bonds are not known experimentally, the predicted bond dissociation energies of up to 94.1 kcal/mol for (NMe(2))(3)Mo-W(NMe(2))(3) indicate that they are stable enough to be isolated in the condensed phase. The results of the EDA show that the stronger R(3)M-M'R(3) bonds for heavier metal atoms can be ascribed to the larger electrostatic interaction caused by effective attraction between the expanding valence orbitals in one metal atom and the more positively charged nucleus in the other metal atom. The orbital interaction reveal that the covalency of the homonuclear and heteronuclear R(3)M-M'R(3) bonds is due to genuine triple bonds with one σ- and one degenerate π-symmetric component. The metal-metal bonds may be classified as triple bonds where π-bonding is much stronger than σ-bonding; however, the largest attraction comes from the quasiclassical contribution to the metal-metal bonding. The heterodimetallic species show only moderate polarity and their properties and stabilities are intermediate between the corresponding homodimetallic species, a fact which should allow for the experimental isolation of heterodinuclear species. CASPT2 calculations of Cl(3)M-MCl(3) (M = Cr, Mo, W) support the assignment of the molecules as triply bonded systems.  相似文献   

16.
The synthesis and characterization of a family of Mn(2)(III)Mn(2)(II)Ln(III)(2) complexes (Ln = Gd (1), Tb (2), Dy (3), and Ho (4)) of formula [Mn(4)Ln(2)O(2)(O(2)CBu(t))(6)(edteH(2))(2)(NO(3))(2)] are reported, where edteH(4) is N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine. The analogous Mn(4)Y(2) (5) complex has also been prepared. They were obtained from reaction of Ln(NO(3))(3) or Y(NO(3))(3) with Mn(O(2)CBu(t))(2), edteH(4), and NEt(3) in a 2:3:1:2 molar ratio. The crystal structures of representative 1 and 2 were obtained, and their core consists of a face-fused double-cubane [Mn(4)Ln(2)(μ(4)-O(2-))(2)(μ(3)-OR)(4)] unit. Such double-cubane units are extremely rare in 3d metal chemistry and unprecedented in 3d-4f chemistry. Variable-temperature, solid-state dc and ac magnetic susceptibility studies on 1-5 were carried out. Fitting of dc χ(M)T vs T data for 5 gave J(bb) (Mn(III)···Mn(III)) = -32.6(9) cm(-1), J(wb) (Mn(II)···Mn(III)) = +0.5(2) cm(-1), and g = 1.96(1), indicating a |n, 0, n> (n = 0-5) 6-fold-degenerate ground state. The data for 1 indicate an S = 12 ground state, confirmed by fitting of magnetization data, which gave S = 12, D = 0.00(1) cm(-1), and g = 1.93(1) (D is the axial zero-field splitting parameter). This ground state identifies the Mn(II)···Gd(III) interactions to be ferromagnetic. The ac susceptibility data independently confirmed the conclusions about 1 and 5 and revealed that 2 displays slow relaxation of the magnetization vector for the Mn(4)Tb(2) analogue 2. The latter was confirmed as a single-molecule magnet by observation of hysteresis below 0.9 K in magnetization vs dc field scans on a single crystal of 2·MeCN on a micro-SQUID apparatus. The hysteresis loops also displayed well-resolved quantum tunneling of magnetization steps, only the second 3d-4f SMM to do so.  相似文献   

17.
Raman spectra of a number of triply bonded M(2)X(6) (M = Mo, W; X = alkoxide, alkyl) compounds have been obtained. Several exhibit a band assignable to the metal-metal stretching vibration nu(M)(M). This band was not identified in earlier studies of the M(2)(NMe(2))(6) compounds. We have attempted to correlate the Raman vibrational data with structural data from single-crystal X-ray diffraction studies. Diffraction studies of the M(2)(O-1-4-pentyl[2.2.2]bicyclooctyl)(6) species show a crowded environment around the dimetal core, but the M-M-O angles differ substantially from 90 degrees. Thus, this angle does not solely determine the extent to which the metal-metal and ligand-based vibrational modes couple and, in turn, our ability to observe nu(M)(M). Computational studies of model systems confirm the assignment of the band as being nu(M)(M), although the predicted vibrational energies are consistently too high by ca. 7%. The computational results suggest that a nu(M)(M) band may be present in the published spectra of the M(2)(NMe(2))(6) pair.  相似文献   

18.
A series of low-spin, six-coordinate complexes [Fe(TBzTArP)L(2)]X (1) and [Fe(TBuTArP)L(2)]X (2) (X = Cl(-), BF(4)(-), or Bu(4)N(+)), where the axial ligands (L) are HIm, 1-MeIm, DMAP, 4-MeOPy, 4-MePy, Py, and CN(-), were prepared. The electronic structures of these complexes were examined by (1)H NMR and electron paramagnetic resonance (EPR) spectroscopy as well as density functional theory (DFT) calculations. In spite of the fact that almost all of the bis(HIm), bis(1-MeIm), and bis(DMAP) complexes reported previously (including 2) adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state, the corresponding complexes of 1 show the (d(xz), d(yz))(4)(d(xy))(1) ground state at ambient temperature. At lower temperature, the electronic ground state of the HIm, 1-MeIm, and DMAP complexes of 1 changes to the common (d(xy))(2)(d(xz), d(yz))(3) ground state. All of the other complexes of 1 and 2 carrying 4-MeOPy, 4-MePy, Py, and CN(-) maintain the (d(xz), d(yz))(4)(d(xy))(1) ground state in the NMR temperature range, i.e., 298-173 K. The EPR spectra taken at 4.2 K are fully consistent with the NMR results because the HIm and 1-MeIm complexes of 1 and 2 adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state, as revealed by the rhombic-type spectra. The DMAP complex of 1 exists as a mixture of two electron-configurational isomers. All of the other complexes adopt the (d(xz), d(yz))(4)(d(xy))(1) ground state, as revealed by the axial-type spectra. Among the complexes adopting the (d(xz), d(yz))(4)(d(xy))(1) ground state, the energy gap between the d(xy) and d(π) orbitals in 1 is always larger than that of the corresponding complex of 2. Thus, it is clear that the benzoannelation of the porphyrin ring stabilizes the (d(xz), d(yz))(4)(d(xy))(1) ground state. The DFT calculation of the bis(Py) complex of analogous iron(III) porphyrinate, [Fe(TPTBzP)(Py)(2)](+), suggests that the (d(xz), d(yz))(4)(d(xy))(1) state is more stable than the (d(xy))(2)(d(xz), d(yz))(3) state in both ruffled and saddled conformations. The lowest-energy states in the two conformers are so close in energy that their ordering is reversed depending on the calculation methods applied. On the basis of the spectroscopic and theoretical results, we concluded that 1, having 4-MeOPy, 4-MePy, and Py as axial ligands, exists as an equilibrium mixture of saddled and ruffled isomers both of which adopt the (d(xz), d(yz))(4)(d(xy))(1) ground state. The stability of the (d(xz), d(yz))(4)(d(xy))(1) ground state is ascribed to the strong bonding interaction between the iron d(xy) and porphyrin a(1u) orbitals in the saddled conformer caused by the high energy of the a(1u) highest occupied molecular orbital in TBzTArP. Similarly, a bonding interaction occurs between the d(xy) and a(2u) orbitals in the ruffled conformer. In addition, the bonding interaction of the d(π) orbitals with the low-lying lowest unoccupied molecular orbital, which is an inherent characteristic of TBzTArP, can also contribute to stabilization of the (d(xz), d(yz))(4)(d(xy))(1) ground state.  相似文献   

19.
The bifunctional carbamoyl methyl sulfoxide ligands, PhCH(2)SOCH(2)CONHPh (L1), PhCH(2)SOCH(2)CONHCH(2)Ph (L2), PhSOCH(2)CON(i)Pr(2)(L3), PhSOCH(2)CONBu(2)(L4), PhSOCH(2)CON(i)Bu(2)(L5) and PhSOCH(2)CON(C(8)H(17))(2)(L6) have been synthesized and characterized by spectroscopic methods. The selected coordination chemistry of L1, L3, and L5with [UO(2)(NO(3))(2)] and [Ce(NO(3))(3)] has been evaluated. The structures of the compounds [UO(2)(NO(3))(2)(PhSOCH(2)CON(i)Bu(2))](10) and [Ce(NO(3))(3)(PhSOCH(2)CONBu(2))(2)](12) have been determined by single crystal X-ray diffraction methods. Preliminary extraction studies of ligand L6 with U(VI), Pu(IV) and Am(III) in tracer level showed an appreciable extraction for U(VI) and Pu(IV) in up to 10 M HNO(3) but not for Am(III). Thermal studies on compounds 8 and 10 in air revealed that the ligands can be destroyed completely on incineration. The electron spray mass spectra of compounds 8 and 10 in acetone show that extensive ligand distribution reactions occur in solution to give a mixture of products with ligand to metal ratios of 1: 1 and 2 :1. However, 10 retains its solid state structure in CH(2)Cl(2).  相似文献   

20.
A new anion sensor [Ru(bpy)(2)(DMBbimH(2))](PF(6))(2) (3) (bpy is 2, 2'-bipyridine and DMBbimH(2) is 7,7'-dimethyl-2,2'-bibenzimidazole) has been developed. Its photophysical, electrochemical and anion sensing properties are compared with two previously investigated systems, [Ru(bpy)(2)(BiimH(2))](PF(6))(2) (1) and [Ru(bpy)(2)(BbimH(2))](PF(6))(2) (2) (BiimH(2) is 2,2'-biimidazole and BbimH(2) is 2,2'-bibenzimidazole). The high acidity of the N-H fragments in these complexes make them easy to be deprotonated by strong basic anions such as F(-) and OAc(-), and they form N-H···X hydrogen bonds with weak basic anions like Cl(-), Br(-), I(-), NO(3)(-), and HSO(4)(-). Complex 3 displays strong hydrogen bonding with these 5 weak basic anions, with binding constants between 17,000 and 21,000, which are larger than those observed in complex 1, with binding constants between 3300 and 5700, and in complex 2, which shows no hydrogen bonding toward Cl(-), Br(-), I(-), and NO(3)(-), and forms considerable hydrogen bonds with HSO(4)(-) with a binding constant of 11,209. These hydrogen bonding behaviours give different NMR, emission and electrochemical responses. The different anion binding affinity of these complexes may be mainly attributed to their different pK(a1) values, 7.2 for 1, 5.7 for 2, and 6.2 for 3. The additional methyl groups at the 7 and 7' positions of complex 3 may also play an important role in the enhancement of anion binding strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号