首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
It's just an illusion: Above a critical chain length, where oligomers contain five or more recognition units, apparently infinite donor-acceptor polypseudorotaxanes are formed in the solid state (see picture). X-ray crystallographic analyses of three different examples have shown that although the oligomeric chains are undoubtedly discrete and monodisperse, they nevertheless appear to be infinite in the crystal.  相似文献   

6.
7.
While reinvestigating the published synthesis of OPI(3), it became evident from the experiments that phosphoryl triodide may only be formed as an intermediate and that the end products of the reaction of OPCl(3) with LiI are P(V) oxides, PI(3), I(2), and LiCl. This is also in agreement with MP2/TZVPP calculations, which assign Delta(r)H degrees (Delta(r)G degrees ) [Delta(r)G degrees in CHCl(3)] for the disproportionation of OPI(3) as -7 (-18) [-17 kJ mol(-1)] (assuming P(4)O(10) as the P(V) oxide). The first products of this reaction visible in a low-temperature in situ (31)P NMR experiment are P(2)I(4) and PI(3), as well as traces of a compound that may be OPCl(2)I. By contrast, it was possible to prepare and structurally characterize Lewis acid [A] stabilized [A]<--OPX(3) adducts, where [A] is Al(OR(F))(3) for X=Br and Al(OR(F))(2)(mu-F)Al(OR(F))(3) for X=I (R(F)=C(CF(3))(3)). These adducts are formed on decomposition of PX(4) (+)[Al(OR(F))(4)](-); high yields of Br(3)PO-->Al(OR(F))(3) (delta((31)P)=-65) were obtained, while I(3)PO-->Al(OR(F))(3) (delta((31)P)=-337) and I(3)PO-->Al(OR(F))(2)(mu-F)Al(OR(F))(3) (delta((31)P)=-332) are only formed as by-products. The main product of the room-temperature decomposition of PI(4) (+)[Al(OR(F))(4)](-) is PI(4) (+)[(R(F)O)(3)Al(mu-F)Al(OR(F))(3)](-), which was also characterized by X-ray crystallography and was independently prepared from Ag(+)[(R(F)O)(3)Al(mu-F)Al(OR(F))(3)](-), PI(3), and I(2).  相似文献   

8.
The structure of the charge-transfer complex hexakis(n-hexyloxy)triphenylene-2,4,7-trinitro-9-fluorenone (HAT6-TNF) has been characterized by neutron scattering, X-ray diffraction (XRD), optical microscopy, and dielectric relaxation spectroscopy (DRS). On the basis of these data and the 1:1 stoichiometry, a consistent structure for the complex is proposed. This structure differs markedly from structures previously proposed for similar materials, because the TNF molecules are found to be situated between the discotic columns rather than sandwiched between the discotic molecules of a given column. The addition of TNF to HAT6 is found to stiffen the structure, and quasi-elastic neutron scattering shows that the local dynamics of the discotic molecules in HAT6-TNF is slowed by the presence of the TNF molecules. This scenario is consistent with the observation of two VFT-type (VFT=Vogel-Fulcher-Tamman) dielectric relaxation processes that relate to the columnar glass transition and a polyethylene-like hindered glass transition originating from the nano-phase-separated fraction of the aliphatic tails.  相似文献   

9.
10.
Quantum chemical calculations using density functional theory at the BP86/TZVPP level and ab initio calculations at the SCS-MP2/TZVPP level have been carried out for the group 13 complexes [(NHC)(EX(3))] and [(NHC)(2)(E(2)X(n))] (E=B to In; X=H, Cl; n=4, 2, 0; NHC=N-heterocyclic carbene). The monodentate Lewis acids EX(3) and the bidentate Lewis acids E(2) X(n) bind N-heterocyclic carbenes rather strongly in donor-acceptor complexes [(NHC)(EX(3))] and [(NHC)(2)(E(2)X(n))]. The equilibrium structures of the bidentate complexes depend on the electronic reference state of E(2)X(n), which may vary for different atoms E and X. All complexes [(NHC)(2)(E(2)X(4))] possess C(s) symmetry in which the NHC ligands bind in a trans conformation to the group 13 atoms E. The complexes [(NHC)(2)(E(2)H(2))] with E=B, Al, Ga have also C(s) symmetry with a trans arrangement of the NHC ligands and a planar CE(H)E(H)C moiety that has a E=E π bond. In contrast, the indium complex [(NHC)(2)(In(2) H(2))] has C(i) symmetry with pyramidal-coordinated In atoms in which the hydrogen atoms are twisted above and below the CInInC plane. The latter C(i) form is calculated for all chloride systems [(NHC)(2)(E(2)Cl(2))], but the boron complex [(NHC)(2)(B(2)Cl(2))] deviates only slightly from C(s) symmetry. The B(2) fragment in the linear coordinated complex [(NHC)(2)(B(2))] has a highly excited (3)(1)Σ(g)(-) reference state, which gives an effective B≡B triple bond with a very short interatomic distance. The heavier homologues [(NHC)(2)(E(2))] (E=Al to In) exhibit a anti-periplanar arrangement of the NHC ligands in which the E(2) fragments have a (1)(1) Δ(g) reference state and an E=E double bond. The calculated energies suggest that the dihydrogen release from the complexes [(NHC)(EH(3))] and [(NHC)(2)(E(2)H(n))] becomes energetically more favourable when atom E becomes heavier. The indium complexes should therefore be the best candidates of the investigated series for hydrogen-storage systems that could potentially deliver dihydrogen at close to ambient temperature. The hydrogenation reaction of the dimeric magnesium(I) compound [LMgMgL] (L=β-diketiminate) with [(NHC)(EH(3))] becomes increasingly exothermic with the trend B相似文献   

11.
The solution and solid-state structures of hexamethylphosphoramide (HMPA) adducts of tetrachlorosilane (SiCl4) are discussed. In solution, the meridional and facial isomers of the hexa-coordinate cationic complex 3 HMPASiCl3 + Cl(-) (2) predominate at all HMPA concentrations, and are in equilibrium with the hexa-coordinate neutral trans- and cis-2 HMPASiCl4 complexes (1), as well as the penta-coordinate cationic cis-2 HMPASiCl3 + Cl(-) (3). Single crystal X-ray analyses are reported for the ionized mer-3 HMPASiCl3 + HCl2 (-) and the neutral trans-2 HMPASiCl4 complexes.  相似文献   

12.
The equilibrium geometries and bond energies of the complexes H(3)B-L and H(2)B(+)-L (L=CO; EC(5)H(5): E=N, P, As, Sb, Bi) have been calculated at the BP86/TZ2P level of theory. The nature of the donor-acceptor bonds was investigated by energy decomposition analysis (EDA). The bond strengths of H(3)B-L have the order CO>N>P>As>Sb>Bi. The calculated values are between D(e)=37.1 kcal mol(-1) for H(3)B-CO and D(e)=6.9 kcal mol(-1) for H(3)B-BiC(5)H(5). The bond dissociation energies of the cations H(2)B(+)-CO and H(2)B(+)-EC(5)H(5) are larger than for H(3)B--L, particularly for complexes of the heterobenzene ligands. The calculated values are between D(e)=51.9 kcal mol(-1) for H(2)B(+)-CO and D(e)=122.1 kcal mol(-1) for H(2)B(+)-NC(5)H(5). The trend of the BDE of H(2)B(+)-CO and H(2)B(+)-EC(5)H(5) is N>P>As>Sb>Bi>CO. A surprising result is found for H(2)B(+)-CO, which has a significantly stronger and yet substantially longer bond than H(3)B-CO. The reason for the longer but stronger bond in H(2)B(+)-CO compared with that in H(3)B-CO comes mainly from the change in electrostatic attraction and pi bonding at shorter distances, which increases more in the neutral system than in the cation, and to a lesser extent from the deformation energy of the fragments. The H(2)B(+)<--NC(5)H(5) pi( perpendicular) donation plays an important role for the stronger interactions at shorter distances compared with those in H(3)B-NC(5)H(5). The attractive interaction in H(2)B(+)--CO further increases at bond lengths that are shorter than the equilibrium value, but this is compensated by the energy which is necessary to deform BH(2) (+) from its linear equilibrium geometry to the bent form in the complex. The EDA shows that the contributions of the orbital interactions to the donor-acceptor bonds are always larger than the classical electrostatic contributions, but the latter term plays an important role for the trend in bond strength. The largest contributions to the orbital interactions come from the sigma orbitals. The EDA calculations suggest that heterobenzene ligands may become moderately strong pi donors in complexes with strong Lewis acids, while CO is only a weak pi donor. The much stronger interaction energies in H(2)B(+)-EC(5)H(5) compared with those in H(3)B-EC(5)H(5) are caused by the significantly larger contribution of the pi(perpendicular) orbitals in H(2)B(+)-EC(5)H(5) and by the increase of the binding interactions of the sigma+pi( parallel) orbitals.  相似文献   

13.
Synthesis and characterization of dendrimers containing thienylbenzene repeating units, red-emitting benzothiadiazole core, and triarylamine peripheries that bear naphthyl units are reported. The relevant dendrimers of different generations are classified as G(nb) (n=1-3), while the tert-butyl dendrimers G(na) with the acceptor alone were also synthesized to serve as control chromophores that avoid donor-acceptor interactions. The resulting dendrimers are capable of harvesting photon energy through efficient energy transfer among donor-acceptor moieties, so that highly luminescent red fluorophores result. Transient fluorescence studies suggest that the energy transfer and its efficiency are approximately unity in all G(a) dendrimers, whereas the rate of energy transfer for the G(b) dendrimers is suppressed, that is, charge transfer from the core to the periphery is a significant quenching pathway. These dendrimers are amorphous in nature with high glass transition temperatures (176-201 degrees C). Electroluminescent devices were fabricated by using the dendrimers as hole-transporting emitters, and the devices exhibit promising red emission parameters.  相似文献   

14.
A series of donor-acceptor substituted stilbene and diphenylacetylene derivatives and their octupolar analogues have been synthesized and the linear and nonlinear optical properties (beta) studied by both experiments and theoretical calculation. The lambda(max) of the dipoles increases with the conjugation length and is always larger when the C=C bond is used, instead of the C[triple bond]C bond, as the conjugation bridge. Although the lambda(max) values of the octupoles show no clear trend, they are much larger than those of the dipoles. The beta(0) values of the dipoles increase with conjugation length and as the conjugation bridge is changed from the C[triple bond]C to C=C bond. This increase is accompanied by an increase in either lambda(max) or the oscillator strength. Similarly, the beta(0) values of the octupoles increase with the conjugation length and with a change in the donor in the order: NEt2 < N(i-amyl)Ph < NPh2. Moreover, beta(yyy)/beta(zzz) ratios are in the range of 1.6-3.9 and decrease with the conjugation length. Beta values calculated by the finite-field and sum-over-states methods are in good agreement with the experimental data. Also, there is a parallel relationship between the calculated beta values and bond length alternation (BLA). From these results, the origin of the larger beta values for octupoles than for dipoles is assessed.  相似文献   

15.
Donor- and/or acceptor-substituted pi-conjugated systems represent an important class of compounds in organic chemistry. However, up to now, a general method to quantitatively address the efficiency of a conjugated path is still missing. In this work, a novel computational approach based on deletion energies and on second-order orbital interaction energies in a natural bond orbital (NBO) scheme is employed to quantitatively assess ("measure") delocalization energies. Moreover, the purpose of this work is to assess the efficiency of distinct pi-conjugated paths, that is, geminal, cis, and trans, as well as to predict the impact of substituents on a given backbone. This study is focused on various mono-, di-, tri-, and tetrasubstituted tetraethynylethenes (TEEs). These model systems are suitable for our analysis, because they offer distinct conjugation paths within the same molecule, and can also be substituted in multiple ways. Differences between conjugation paths, the effect of neighbor paths, and the impact of donor and acceptor substituents on the various paths are discussed.  相似文献   

16.
A wide variety of monomeric and oligomeric, donor-substituted 1,1,4,4-tetracyanobutadienes (TCBDs) have been synthesized by [2+2] cycloaddition between tetracyanoethylene (TNCE) and donor-substituted alkynes, followed by electrocyclic ring opening of the initially formed cyclobutenes. Reaction yields are often nearly quantitative but can be affected by the electron-donating power and steric demands of the alkyne substituents. The intramolecular charge-transfer (CT) interactions between the donor and TCBD acceptor moieties were comprehensively investigated by X-ray crystallography, electrochemistry, UV-visible spectroscopy, and theoretical calculations. Despite the nonplanarity of the new chromophores, which have a substantial twist between the two dicyanovinyl planes, efficient intramolecular CT interactions are observed, and the crystal structures demonstrate a high quinoid character in strong donor substituents, such as N,N-dimethylanilino (DMA) rings. The maxima of the CT bands shift bathochromically upon reduction of the amount of conjugative coupling between strong donor and acceptor moieties. Each TCBD moiety undergoes two reversible, one-electron reduction steps. Thus, a tri-TCBD derivative with a 1,3,5-trisubstituted benzene core shows six reversible reduction steps within an exceptionally narrow potential range of 1.0 V. The first reduction potential E(red,1) is strongly influenced by the donor substitution: introduction of more donor moieties causes an increasingly twisted TCBD structure, a fact that results in the elevation of the LUMO level and, consequently, a more difficult first reduction. The potentials are also strongly influenced by the nature of the donor residues and the extent of donor-acceptor coupling. A careful comparison of electrochemical data and the correlation with UV-visible spectra made it possible to estimate unknown physical parameters such as the E(red,1) of unsubstituted TCBD (-0.31 V vs Fc+/Fc) as well as the maxima of highly broadened CT bands. Donor-substituted TCBDs are stable molecules and can be sublimed without decomposition. With their high third-order optical nonlinearities, as revealed in preliminary measurements, they should become interesting chromophores for ultra-thin film formation by vapor deposition techniques and have applications in opto-electronic devices.  相似文献   

17.
Absorption and emission spectra of 9-N,N-dimethylaniline decahydroacridinedione (DMAADD) have been studied in different solvents. The fluorescence spectra of DMAADD are found to exhibit dual emission in aprotic solvents and single emission in protic solvents. The effect of solvent polarity and viscosity on the absorption and emission spectra has also been studied. The fluorescence excitation spectra of DMAADD monitored at both the emission bands are different. The presence of two different conformation of the same molecule in the ground state has lead to two close lying excited states, local excited (LE) and charge transfer (CT), and thereby results in the dual fluorescence of the dye. A CTstate involving the N,N-dimethylaniline group and the decahy droacridinedione chromophore as donor and acceptor, respectively, has been identified as the source of the long wavelength anomalous fluorescence. The experimental studies were supported by ab initio time dependent-density functional theory (TDDFT) calculations performed at the B3LYP/6-31G* level. The molecule possesses photoinduced electron transfer (PET) quenching in the LE state, which is confirmed by the fluorescence lifetime and fluorescent intensity enhancement in the presence of transition metal ions.  相似文献   

18.
Reported are the syntheses of ester-functionalized (6-8) and alkyl-substituted (9) 1-aza-adamantanones; the easy handling of the compounds provides an opportunity to comprehensively study the fundamental changes in structure and reactivity that can accompany the donor-acceptor arrangement in rigid beta-aminoketones. X-ray structural analysis of trione 6 and dione 7 reveals bond length and angle variations consistent with through-bond (hyperconjugative) donor-acceptor interactions. Observed is a shortening of the C-N bond, elongation of the central C-C bond (to approximately 1.6 A), and a significant pyramidalization of the carbonyl carbon within the donor-sigma-acceptor pathway. UV/Vis spectra of 6-9 show a new absorption maximum (lambda(max)=260-275 nm in three solvents), the so-called "sigma-coupled transition"; the molar absorptivity scales with the number of carbonyl groups (for trione 6, epsilon approximately 3000, for dione 7, epsilon approximately 2000) and the band reversibly disappears upon addition of acid. IR and (13)C NMR spectroscopic data show trends consistent with through-bond donation to the carbonyl acceptor groups and commensurate weakening of the carbonyl pi bond. High yielding acid-mediated fragmentations are used to illustrate the effects of the donor-acceptor arrangement on the reactivity of the molecules. Given that donor-sigma-acceptor molecules have recently been found to show self-assembly behavior and macromolecular properties linked to their unusual structure, the current analysis encourages further consideration of the systems in advanced materials applications.  相似文献   

19.
Quantum-chemical calculations with DFT (BP86) and ab initio methods [MP2, SCS-MP2, CCSD(T)] have been carried out for the molecules C(PH(3))(2) (1), C(PMe(3))(2) (2), C(PPh(3))(2) (3), C(PPh(3))(CO) (4), C(CO)(2) (5), C(NHC(H))(2) (6), C(NHC(Me))(2) (7) (Me(2)N)(2)C=C=C(NMe(2))(2) (8), and NHC (9), where NHC=N-heterocyclic carbene and NHC(Me)=N-methyl-substituted NHC. The electronic structure in 1-9 was analyzed with charge- and energy-partitioning methods. The results show that the bonding situations in L(2)C compounds 1-8 can be interpreted in terms of donor-acceptor interactions between closed-shell ligands L and a carbon atom which has two lone-pair orbitals L-->C<--L. This holds particularly for the carbodiphosphoranes 1-3 where L=PR(3), which therefore are classified as divalent carbon(0) compounds. The NBO analysis suggests that the best Lewis structures for the carbodicarbenes 6 and 7 where L is a NHC ligand have C==C==C double bonds as in the tetraaminoallene 8. However, the Lewis structures of 6-8, in which two lone-pair orbitals at the central carbon atom are enforced, have only a slightly higher residual density. Visual inspection of the frontier orbitals of the latter species reveals their pronounced lone-pair character, which suggests that even the quasi-linear tetraaminoallene 8 is a "masked" divalent carbon(0) compound. This explains the very shallow bending potential of 8. The same conclusion is drawn for phosphoranylketene 4 and for carbon suboxide (5), which according to the bonding analysis have hidden double-lone-pair character. The AIM analysis and the EDA calculations support the assignment of carbodiphosphoranes as divalent carbon(0) compounds, while NHC 9 is characterized as a divalent carbon(II) compound. The L-->C((1)D) donor-acceptor bonds are roughly twice as strong as the respective L-->BH(3) bond.  相似文献   

20.
Experimental and theoretical methods were used to study newly synthesized thiophene-pi-conjugated donor-acceptor compounds, which were found to exhibit efficient intramolecular charge-transfer emission in polar solvents with relatively large Stokes shifts and strong solvatochromism. To gain insight into the solvatochromic behavior of these compounds, the dependence of the spectra on solvent polarity was studied on the basis of Lippert-Mataga models. We found that intramolecular charge transfer in these donor-acceptor systems is significantly dependent on the electron-withdrawing substituents at the thienyl 2-position. The dependence of the absorption and emission spectra of these compounds in methanol on the concentration of trifluoroacetic acid was used to confirm intramolecular charge-transfer emission. Moreover, the calculated absorption and emission energies, which are in accordance with the experimental values, suggested that fluorescence can be emitted from different geometric conformations. In addition, a novel S(2) fluorescence phenomenon for some of these compounds was also be observed. The fluorescence excitation spectra were used to confirm the S(2) fluorescence. We demonstrate that S(2) fluorescence can be explained by the calculated energy gap between the S(2) and S(1) states of these molecules. Furthermore, nonlinear optical behavior of the thiophene-pi-conjugated compound with diethylcyanomethylphosphonate substituents was predicted in theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号