共查询到20条相似文献,搜索用时 15 毫秒
1.
Thorslund S Sanchez J Larsson R Nikolajeff F Bergquist J 《Colloids and surfaces. B, Biointerfaces》2005,46(4):240-247
A new composition of heparin coating for microfluidic systems made out of poly(dimethylsiloxane) (PDMS) was developed and evaluated. The coating that consists of a conditioning polyamine layer followed by two heparin/glutaraldehyde layers, resulted in channel surfaces with sufficient wettability to obtain flow of human normal plasma by capillary force alone. Hydrophilic channel walls are a desirable characteristic in microfluidic devices, since alternative pumping mechanisms must otherwise be included into the system. The immobilized heparin showed high antithrombin-binding capacity and a low degree of blood–material interaction. Plasma in contact with heparin-coated PDMS formed no detectable fibrin in a spectrophotometric assay by which plasma in contact with non-treated PDMS showed complete coagulation. The quartz crystal microbalance technique with energy dissipation monitoring (QCM-D) was utilized to obtain detailed information regarding adsorption kinetics and structural properties of the different layers composing the heparin coating. 相似文献
2.
Motoki Okaniwa Yoshihisa Ohta 《Journal of polymer science. Part A, Polymer chemistry》1997,35(13):2607-2617
The influence of radical initiators upon the emulsion graft copolymerization of styrene and acrylonitrile onto poly(dimethylsiloxane) (PDMS) was studied. As initiators, a series of peroxides and hydroperoxides were coupled with ferrous sulfate, among which the tert-butyl peroxylaurate system gave the highest grafting efficiency (30%). The tert-butyl peroxylaurate initiator fulfills the criteria for efficient radical grafting by generating only the tert-butoxy radical, which is reluctant to form a carbon radical via β-scission, being highly hydrophobic, and not carrying a tertiary hydrogen that may be abstracted by a radical. 13C-NMR analysis of the products showed that the grafting occurred on the silylmethyl groups of PDMS to give 10–25 grafts per polymer and graft ratio in the range 44–140%. The PDMS graft copolymers thus obtained could be used as surface-modifying agents to improve the lubricity and water-repellency of ABS [poly(styrene-co-acrylonitrile)-graft-polybutadiene]. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2607–2617, 1997 相似文献
3.
This work describes the preparation and characterization of six stationary phases for high-performance liquid chromatography (HPLC) obtained by deposition of poly(dimethylsiloxane) (PDMS) in HPLC silica particles, followed by immobilization using different processes (thermal treatments, thermal treatment + microwave irradiation, self-immobilization + gamma irradiation and self-immobilization + microwave irradiation). The chromatographic parameters of all the phases were evaluated with a mixture of test compounds having varied natures (acid, basic and neutral). The stability of one of these phases was evaluated in both a neutral mobile phase and a higher pH mobile phase used at an elevated temperature, with promising results. 相似文献
4.
Using dynamic light scattering, mechanical rheometry, and visual observation, the static wetting behavior of PDMS-grafted silica spheres (PDMS-g-silica) in PDMS melts is related to their rheology. A phase diagram is mapped out for a constant grafted chain length as a function of grafting density and free polymer chain length. The transition between stable and aggregated regions is determined optically and with dynamic light scattering. It is associated with a first-order wetting transition. In the stable region Newtonian behavior is observed for semidilute suspensions. The hydrodynamic brush thicknesses, deduced from viscosity measurements, correspond closely to values obtained from self-consistent field calculations for the various parameter values. At the transition, the brush collapses suddenly and shear-thinning and thixotropy appear. The rheology indicates a degree of aggregation that increases with increasing length of the free polymer, as suggested by the theory. 相似文献
5.
We propose a convenient and reliable approach for immobilizing microbeads on poly(dimethylsiloxane) (PDMS) microchips. It is built upon a simple fabrication procedure of PDMS chip through directly printing the master with an office laser printer which was described in our previous work (J. Chromatogr. A 2005, 1089, 270-275). On the printed toners used as the positive relief of the master, microbeads were immobilized by a thermal treatment and then transferred to the surface of the microchip by direct molding of the prepolymer on the master. With this approach, the region-selective immobilization of microbeads and the fabrication of PDMS microchips can be accomplished at the same time. Then, using these microbeads as supports, further modification with enzyme was achieved. Surface characteristics of the microbeads-modified PDMS microchannels were investigated with scanning electron microscope, atomic force microscope, and inverse fluorescence microscope. The electrokinetic properties of the native PDMS and the modified PDMS chips were also compared. Based on this approach, an immobilized glucose oxidase (GOD) reactor was constructed and the reaction using glucose as substrate was studied. All these experiments aim to show that the proposed approach may have a good potential in the study of biochemistry and other related areas. 相似文献
6.
In order to achieve a simple covalent hydrophilic polymer coating on poly(dimethylsiloxane) (PDMS) microfluidic chip, epoxy modified hydrophilic polymers were synthesized in aqueous solution with a persulfate radical initiation system, and crosslinked onto PDMS pretreated by oxygen plasma and silanized with 3-aminopropyl-triethoxysilanes (APTES). Glycidyl methacrylate (GMA) was copolymerized with acrylamide (poly(AAM-co-GMA)) or dimethylacrylamide (poly(DAM-co-GMA)), and graft polymerized with polyvinylpyrrolidone (PVP-g-GMA) or polyvinylalcohol (PVA-g-GMA). The epoxy groups in the polymers were determined by UV spectra after derivation with benzylamine. Reflection absorption infrared spectroscopy (RAIRS) confirmed covalent grafting of GMA-modified polymers onto PDMS surface. Electroosmotic flow (EOF) in the polymer grafted microchannel was strongly suppressed within the range pH 3-11. Surface adsorption of lysozyme and bovine serum albumin (BSA) was reduced to less than 10% relative to that on the native PDMS surface. On the GMA-modified polymer coated PDMS microchip, basic proteins, peptides, and sodium dodecyl sulfate (SDS) denatured proteins were separated successfully. 相似文献
7.
Masatoshi Tosaka Miki Noda Kazuta Ito Kazunobu Senoo Koki Aoyama Noboru Ohta 《Colloid and polymer science》2013,291(11):2719-2724
Phase behavior of silica-filled poly(dimethylsiloxane) (PDMS) network was investigated by wide-angle X-ray diffraction (WAXD) under various strain ratio between room temperature and ?100 °C, and anomalous polymorphic behavior was discovered. At room temperature, when sufficient strain was applied, PDMS network was found to transform into the mesomorphic phase from which only a pair of sharp equatorial reflections and faint meridional scattering were obtained in the WAXD pattern. At low temperature, PDMS network crystallized into one of three different crystal forms according to strain ratio. These crystal forms were denoted as α, transient, and β forms in the descending order of corresponding strain ratio. The mesomorphic phase at room temperature transformed into the crystalline α form by reducing temperature. There was an anomalous feature about the transition of the crystalline forms that the position of reflections in the WAXD pattern changed continuously and reversibly with strain between the α and the β forms through the transient form, while keeping the diffraction angles almost unchanged. 相似文献
8.
Spehar AM Koster S Linder V Kulmala S de Rooij NF Verpoorte E Sigrist H Thormann W 《Electrophoresis》2003,24(21):3674-3678
This paper characterizes the basic electrokinetic phenomena occurring within native poly(dimethylsiloxane) (PDMS) microchannels. Using simple buffers and current measurements, current density and electroosmosis data were determined in trapezoidal, reversibly sealed PDMS/PDMS and hybrid PDMS/glass channels with a cross-sectional area of 1035.5 microm(2) and about 6 cm length. This data was then compared to that obtained in an air-thermostated 50 microm inner diameter (1963.5 microm(2) cross-sectional area) fused-silica (FS) capillary of 70 cm length. Having a pH 7.8 buffer with an ionic strength (I) of 90 mM, Ohms's law was observed in the microchannels with electric field strengths of up to about 420 V/cm, which is about twice as high as for the FS capillary. The electroosmotic mobility (micro(EO)) in PDMS and FS is shown to exhibit the same general dependences on I and pH. For all configurations tested, the experimentally determined micro(EO) values were found to correlate well with the relationship micro(EO) = a + b log(I), where a and b are coefficients that are determined via nonlinear regression analysis. Electroosmotic fluid pumping in native PDMS also follows a pH dependence that can be estimated with a model based upon the ionization of silanol. Compared to FS, however, the magnitude of the electroosmotic flow in native PDMS is 50-70% smaller over the entire pH range and is difficult to maintain at acidic pH values. Thus, the origin of the negative charge at the inner wall of PDMS, glass, and FS appears to be similar but the density is lower for PDMS than for glass and FS. 相似文献
9.
Surface modification of poly(dimethylsiloxane) microchannels 总被引:10,自引:0,他引:10
This review looks at the efforts that are being made to modify the surface of poly(dimethylsiloxane) (PDMS) microchannels, in order to enhance applicability in the field of microfluidics. Many surface modifications of PDMS have been performed for electrophoretic separations, but new modifications are being done for emerging applications such as heterogeneous immunoassays and cell-based bioassays. These new modification techniques are powerful because they impart biospecificity to the microchannel surfaces and reduce protein adsorption. Most of these applications require the use of aqueous or polar solvents, which makes surface modification a very important topic. 相似文献
10.
Liu D Perdue RK Sun L Crooks RM 《Langmuir : the ACS journal of surfaces and colloids》2004,20(14):5905-5910
This paper describes immobilization of DNA onto the interior walls of poly(dimethylsiloxane) (PDMS) microsystems and its application to an enzyme-amplified electrochemical DNA assay. DNA immobilization was carried out by silanization of the PDMS surface with 3-mercaptopropyltrimethoxysilane to yield a thiol-terminated surface. 5'-acrylamide-modified DNA reacts with the pendant thiol groups to yield DNA-modified PDMS. Surface-immobilized DNA oligos serve as capture probes for target DNA. Biotin-labeled target DNA hybridizes to the PDMS-immobilized capture DNA, and subsequent introduction of alkaline phosphatase (AP) conjugated to streptavidin results in attachment of the enzyme to hybridized DNA. Electrochemical detection of DNA hybridization benefits from enzyme amplification. Specifically, AP converts electroinactive p-aminophenyl phosphate to electroactive p-aminophenol, which is detected using an indium tin oxide interdigitated array (IDA) electrode. The IDA electrode eliminates the need for a reference electrode and provides a steady-state current that is related to the concentration of hybridized DNA. At present, the limit of detection of the DNA target is 1 nM in a volume of 20 nL, which corresponds to 20 attomoles of DNA. 相似文献
11.
This paper reports on the study of electroosmotic flow (EOF) in poly(dimethylsiloxane) (PDMS) microchannels on the basis of indirect amperometric detection method. Gradual increase of EOF rate in freshly prepared PDMS microchannels was observed with the running buffer of phosphate buffer solution (PBS). With the same concentration (10 mM) of PBS containing different cations and the same pH value (7.0) and, the time of the stable EOF in PDMS microchannels under the applied separation voltage of 1000 V was 49.8 s (Li+ -PBS), 57.1 s (Na+ -PBS), 91 s (K+ -PBS), respectively. Meanwhile, the different adsorption of cations (Li+, Na+ and K+) on hydrophobic PDMS wall was observed through their separation in PDMS microchannels. Such experimental results demonstrated that the EOF in PDMS microchannels came from the cations and anions adsorbed on PDMS wall. This study would not only help us understand the surface state of PDMS, but also provide a useful guidance for establishing the effective surface modification methods in PDMS microchip CE. 相似文献
12.
This paper reports a simple microwave plasma patterning of poly(dimethylsiloxane) (PDMS) surfaces, which is accomplished by allowing selective surface areas to microwave plasma exposure in the presence of gaseous monomer. When maleic anhydride is used for microwave plasma reaction in the presence of physical barrier on the PDMS substrate, the resulting patterned surfaces with chemically bonded maleic anhydride and carboxylic acid groups are generated. In this particular study we attached amoxicillin via ammonolysis under weak base conditions in the presence of a catalyst as well as poly(ethyleneglycol) (PEG). A combination of internal reflection IR imaging (IRIRI) and atomic force microscopy (AFM) revealed that amoxicillin and PEG can be readily reacted on the microwave plasma patterned PDMS surfaces. Surface areas directly exposed to microwave plasmons exhibit the highest reactivity due to higher content of functional groups. These studies also show that molecular weight of PEG has also significant effect on kinetics of surface reactions. 相似文献
13.
The pressure–volume–temperature (PVT) properties of three commercial samples of poly(dimethylsiloxane) are studied experimentally and theoretically in the temperature range 25–150°C and for pressure to ∼ 3 kbar. The Tait equation is employed to represent the data at elevated pressure. Isothermal compressibilities are computed for the three samples. The melt data are analyzed in terms of the Simha–Somcynsky hole theory, and scaling parameters of pressure, volume, and temperature are obtained. Satisfactory agreement between theory and experiment is found over the entire range of experimental pressures. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 841–850, 1998 相似文献
14.
Endler M. Borges 《Microchemical Journal》2010,96(1):120-4388
Several stationary phases were prepared by thermal immobilization of poly(methyloctylsiloxane) onto a silica surface using different amounts of poly(methyloctylsiloaxane), and different times and temperatures of immobilization to provide different carbon contents for the phases. The chromatographic properties were evaluated using the Tanaka test. Comparison of the results obtained with literature data using hierarchical cluster analysis showed dissimilarity with most of the commercial phases. Some basic pharmaceuticals, including six benzodiazepines were separated on one of the better PMOS phases. 相似文献
15.
16.
Fabrication of microfluidic systems in poly(dimethylsiloxane) 总被引:40,自引:0,他引:40
McDonald JC Duffy DC Anderson JR Chiu DT Wu H Schueller OJ Whitesides GM 《Electrophoresis》2000,21(1):27-40
Microfluidic devices are finding increasing application as analytical systems, biomedical devices, tools for chemistry and biochemistry, and systems for fundamental research. Conventional methods of fabricating microfluidic devices have centered on etching in glass and silicon. Fabrication of microfluidic devices in poly(dimethylsiloxane) (PDMS) by soft lithography provides faster, less expensive routes than these conventional methods to devices that handle aqueous solutions. These soft-lithographic methods are based on rapid prototyping and replica molding and are more accessible to chemists and biologists working under benchtop conditions than are the microelectronics-derived methods because, in soft lithography, devices do not need to be fabricated in a cleanroom. This paper describes devices fabricated in PDMS for separations, patterning of biological and nonbiological material, and components for integrated systems. 相似文献
17.
《Polymer Gels and Networks》1993,1(1):33-44
In several published studies, randomly crosslinked networks were prepared from poly(dimethylziloxane) by the selective crosslinking of vinyl side chains with a silicon-hydride crosslinking agent. Stress-strain measurements on these elastomers gave values of the elongation modulus in the limits of small and large deformations which exceeded those predicted by the Flory-Erman theory. Although these unexpectedly large values at the small-strain limit have frequently been attributed to contributions from trapped entanglements, the present analysis interprets them as simply arising from contributions from short chains inadvertently introduced from the silicon-hydride crosslinking agent. In this interpretation there is a bimodal distribution of network chain lengths and, possibly, of crosslink functionalities as well. The present analysis gives results in good agreement with experiment. 相似文献
18.
A new environmentally friendly method is developed for preventing nonspecific biomolecules from adsorption on poly(dimethylsiloxane) (PDMS) surface via in situ covalent modification. o-[(N-Succinimdyl)succiny]-o'-methyl-poly(ethylene glycol) (NSS-mPEG) was covalently grafted onto PDMS microchannel surface that was pretreated by air-plasma and silanized with 3-aminopropyl-triethoxysilanes (APTES). The modification processes were carried out in aqueous solution without any organic solvent. The mPEG side chains displayed extended structure and created a nonionic hydrophilic polymer brushes layer on PDMS surface, which can effectively prevent the adsorption of biomolecules. The developed method had improved reproducibility of separation and stability of electroosmotic flow (EOF), enhanced hydrophilicity of surface and peak resolution, and decreased adsorption of biomolecules. EOF in the modified microchannel was strongly suppressed, compared with those in the native and silanized PDMS microchips. Seven amino acids have been efficiently separated and successfully detected on the coated PDMS microchip coupled with end-channel amperometric detection. Relative standard deviations (RSDs) of their migration time for run-to-run, day-to-day and chip-to-chip, were all below 2.3%. Moreover, the covalent-modified PDMS channels displayed long-term stability for 4 weeks. This novel coating strategy showed promising application in biomolecules separation. 相似文献
19.
S. L. Zhang A. H. Tsou J. C. M. Li 《Journal of Polymer Science.Polymer Physics》2002,40(14):1530-1537
Scratch testing has been performed on elastomeric poly(dimethylsiloxane) (PDMS) coatings on stainless steel with a spherical indenter. The friction coefficient (horizontal‐to‐normal force ratio) during scratching decreases with increasing normal load. This result can be explained by assuming that during scratching the contact area is determined by elastic deformation and the horizontal force is proportional to the contact area. With increasing driving speed, the friction coefficient increases, but the rate of increase decreases; this suggests that the scratching of the PDMS coating is a rate process and that the viscoelastic property of the coating influences its frictional behavior. Below a critical normal load, which increases with the coating thickness, the PDMS coating recovers elastically after being scratched so that there are no scratch marks left behind. Above the critical normal load, the coating is damaged by a combination of delamination at the coating/substrate interface and through‐thickness cracking. When the coating is damaged, there is an increase in the friction coefficient, and the friction force displays significant fluctuations. Furthermore, the critical normal load increases with the driving speed; this implies that time is needed to nucleate damage. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1530–1537, 2002 相似文献
20.
Experimentally-determined permeation transients do not support the view that the behaviour of water in PDMS is significantly influenced by statistical-mechanical clustering; rather, they suggest that water behaves in a straightforward way. Simple calculations appear to confirm that the incidence of the statistical clustering of water in the polymer is negligible. A diffusion coefficient derived to include the influence of hydrophilic sites within the polymer is partially successful in mathematically reproducing measured quantities. An entropy calculation appears to suggest that the amount of mobile water in PDMS is solely thermally determined; hence the reduction of supposed hydrophilic impurities would probably not lead to a reduction in water permeation. The apparently large difference between the water solubility in PDMS, and that in siloxane liquids, a point of some interest in separation processes, remains unexplained in this paper. 相似文献