首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Picosecond time-resolved resonance Raman spectroscopy is used to probe the structural changes of rhodopsin's retinal chromophore as the cis-to-trans isomerization reaction occurs that initiates vision. Room-temperature resonance Raman spectra of rhodopsin's photoproduct with time delays from -0.7 to 20.8 ps are measured using 2.2 ps, 480 nm pump and 1.5 ps, 600 nm probe pulses. Hydrogen-out-of-plane (HOOP) modes at 852, 871, and 919 cm(-1), fingerprint peaks at 1272, 1236, 1211, and 1166 cm(-1), and a broad red-shifted ethylenic band at 1530 cm(-1) are present at the earliest positive pump-probe time delay of 0.8 ps, indicating that the chromophore is already in a strained, all-trans configuration. Kinetic analyses of both the HOOP and ethylenic regions of the photoproduct spectra reveal that these features grow in with fast ( approximately 200 fs) and slow ( approximately 2-3 ps) components. These data provide the first structural evidence that photorhodopsin has a thermally unrelaxed, torsionally strained all-trans chromophore within approximately 1 ps, and possibly within 200 fs, of photon absorption. Following this ultrafast product formation, the all-trans chromophore cools and conformationally relaxes within a few picoseconds to form bathorhodopsin. This cooling process is revealed as an ethylenic frequency blue-shift of 6 cm(-1) (tau approximately 3.5 ps) as well as an ethylenic width narrowing (tau approximately 2 ps). The ultrafast production of photorhodopsin is likely accompanied by an impulsively driven, localized protein response. More delocalized protein modes are unable to relax on this ultrafast time scale enabling the chromophore-protein complex to store the large amounts of photon energy (30-35 kcal/mol) that are subsequently used to drive activating protein conformational changes.  相似文献   

2.
By using a sub-5-fs visible laser pulse, we have made the first observation of the vibrational spectra of the transition state during trans-cis isomerization in the retinal chromophore of bacteriorhodopsin (bR(S68). No instant isomerization of the retinal occurs in spite of electron promotion from the bonding pi-orbital to the anti-bonding pi*-orbital. The difference between the in-plane and out-of-plane vibrational frequencies (about 1150-1250 and 900-1000 cm(-1), respectively) is reduced during the first time period. The vibrational spectra after this period became very broad and weak and are ascribed to a "silent state." The silent state lasts for 700-900 fs until the chromophore isomerizes to the cis-C13 = C14 conformation. The frequency of the C = C stretching mode was modulated by the torsion mode of the C13 = C14 double bond with a period of 200 fs. The modulation was clearly observed for four to five periods. Using the empirical equation for the relation between bond length and stretching frequency, we determined the transitional C = C bond length with about 0.01 angstroms accuracy during the torsion motion around the double bond with 1-fs time resolution.  相似文献   

3.
The reversible red and far-red light-induced transitions of cyanobacterial phytochrome Cph1 from Synechocystis PCC 6803 were investigated by Fourier transform infrared (FTIR) difference spectroscopy. High-quality light-induced Pfr-Pr difference FTIR spectra were recorded for the 58 kDa N-terminal domain of Cph1 by repetitive photochemical cycling and signal averaging. The Pfr-Pr difference spectra in H(2)O and D(2)O were very similar to those previously reported for full-length 85 kDa Cph1.(1) Published assignments were extended by analysis of the effects of (13)C and (15)N isotope substitutions at selected sites in the phycocyanobilin chromophore and by (15)N global labeling of the protein. The Pfr-Pr difference spectra were dominated by an amide I peak/trough at 1653 cm(-1)(+)/1631 cm(-1)(-) and a smaller amide II band at 1554 cm(-1). Labeling effects allowed specific chromophore assignments for the C(1)=O (1736 cm(-1)(-)/1724 cm(-1)(+)) and C(19)=O (1704 cm(-1)(-)) carbonyl vibrations, C=C vibrations at 1589 cm(-1)(+), and bands at 1537(-), 1512(+), 1491(-), 1163(+), 1151(-), 1134(+), 1109(-), and 1072(-) cm(-1) that must involve chromophore C-N bonds. A variety of additional changes were insensitive to isotope labeling of the chromophore. Effects of (15)N labeling of the protein were used to tentatively assign some of these to specific amino acid changes. Those insensitive to (15)N labeling included a protonated aspartic or glutamic acid at 1734 cm(-1)(-)/1722 cm(-1)(+) and a cysteine at 2575 cm(-1)(+)/2557 cm(-1)(-). Bands sensitive to (15)N protein labeling at 1487 cm(-1)(+)/1502 cm(-1)(-) might arise from trytophan and bands at 1261 cm(-1)(+)/1244 cm(-1)(-) and 1107 cm(-1)(-)/1095 cm(-1)(+) might arise from a histidine environment or protonation change. These assignments are discussed in light of the 15Z-E photoisomerization model of phototransformation and the associated protein conformational changes.  相似文献   

4.
The first steps in the photochemistry of bacteriorhodopsin (BR) are investigated with light pulses of 160 fs duration. Four samples are studied: (i) the purple membrane, (ii) deuterated purple membrane, (iii) BR trimers and (iv) BR monomers. In all samples the first intermediate J is formed within 430±50 fs. No isotope effect is observed in the formation of J upon deuteration, in contrast to previous reports with much higher excitation energies. Thus proton movement to or from the retinal Schiff's base is not relevant during the first step. Comparing the data for trimeric and monomeric BR suggests an upper limit of 50 fs for the transfer of excitation energy from the excitonically coupled trimer to a single retinal chromophore.  相似文献   

5.
Halorhodopsin is a retinal protein that acts as a light-driven chloride pump in the Haloarchaeal cell membrane. A chloride ion is bound near the retinal chromophore, and light-induced all- trans --> 13- cis isomerization triggers the unidirectional chloride ion pump. We investigated the primary ultrafast dynamics of Natronomonas pharaonis halorhodopsin that contains Cl (-), Br (-), or I (-) ( pHR-Cl (-), pHR-Br (-), or pHR-I (-)) using ultrafast pump-probe spectroscopy with approximately 30 fs time resolution. All of the temporal behaviors of the S n <-- S 1 absorption, ground-state bleaching, K intermediate (13- cis form) absorption, and stimulated emission were observed. In agreement with previous reports, the primary process exhibited three dynamics. The first dynamics corresponds to the population branching process from the Franck-Condon (FC) region to the reactive (S 1 (r)) and nonreactive (S 1 (nr)) S 1 states. With the improved time resolution, it was revealed that the time constant of this branching process (tau 1) is as short as 50 fs. The second dynamics was the isomerization process of the S 1 (r) state to generate the ground-state 13- cis form, and the time constant (tau 2) exhibited significant halide ion dependence (1.4, 1.6, and 2.2 ps for pHR-Cl (-), pHR-Br (-), and pHR-I (-), respectively). The relative quantum yield of the isomerization, which was evaluated from the pump-probe signal after 20 ps, also showed halide ion dependence (1.00, 1.14, and 1.35 for pHR-Cl (-), pHR-Br (-), and pHR-I (-), respectively). It was revealed that the halide ion that accelerates isomerization dynamics provides the lower isomerization yield. This finding suggests that there is an activation barrier along the isomerization coordinate on the S 1 potential energy surface, meaning that the three-state model, which is now accepted for bacteriorhodopsin, is more relevant than the two-state model for the isomerization process of halorhodopsin. We concluded that, with the three-state model, the isomerization rate is controlled by the height of the activation barrier on the S 1 potential energy surface while the overall isomerization yield is determined by the branching ratios at the FC region and the conical intersection. The third dynamics attributable to the internal conversion of the S 1 (nr) state also showed notable halide ion dependence (tau 3 = 4.5, 4.6, and 6.3 ps for pHR-Cl (-), pHR-Br (-), and pHR-I (-)). This suggests that some geometrical change may be involved in the relaxation process of the S 1 (nr) state.  相似文献   

6.
FEMTOSECOND STUDIES OF PRIMARY PHOTOPROCESSES IN OCTOPUS RHODOPSIN   总被引:1,自引:0,他引:1  
Abstract— Femtosecond spectroscopy of octopus rhodopsin in H2O and D2O was performed over a very wide spectral region of 400–1000 nm. Transient gain and absorption from the excited state were observed for the first time around 650 and 700 nm, respectively, just after 300 fs pulse excitation. Bathorhodopsin was formed within 400 fs from the excited state; therefore, the cis-trans isomerization completes within 400 fs. The first intermediate "primerhodopsin" found in our previous paper is most likely "quasi-thermal" bathorhodopsin, in which the local thermalization of the chromophore is achieved. Then cooling down of the chromophore to the surrounding protein temperature takes place with 20 ± 10 ps along with blue-shifting of a spectrum of 10 ± 5 nm. In addition to these observations, a prominent gain in the region of > 850 nm was observed and decayed with 2–3 ps in H2O. A similar time constant was estimated for a partial decay of an induced absorption around 600 nm. This process may be related with two forms of bathorhodopsin reported previously. In this scheme, two forms of bathorhodopsin are formed with time constants of about 400 fs and 2 ps. In the sample in D2O, time constant of 3–4 ps was obtained for the slower process.  相似文献   

7.
Many proteins act as molecular machines that are fuelled by a nonthermal energy source. Examples include transmembrane pumps and stator-rotor complexes. These systems undergo cyclic motions (CMs) that are being driven along a well-defined conformational trajectory. Superimposed on these CMs are thermal fluctuations (TFs) that are coupled to stochastic motions of the solvent. Here we explore whether the TFs of a molecular machine are affected by the occurrence of CMs. Bacteriorhodopsin (BR) is a light-driven proton pump that serves as a model system in this study. The function of BR is based on a photocycle that involves trans/cis isomerization of a retinal chromophore, as well as motions of transmembrane helices. Hydrogen/deuterium exchange (HDX) mass spectrometry was used to monitor the TFs of BR, focusing on the monomeric form of the protein. Comparative HDX studies were conducted under illumination and in the dark. The HDX kinetics of BR are dramatically accelerated in the presence of light. The isotope exchange rates and the number of backbone amides involved in EX2 opening transitions increase roughly 2-fold upon illumination. In contrast, light/dark control experiments on retinal-free protein produced no discernible differences. It can be concluded that the extent of TFs in BR strongly depends on photon-driven CMs. The light-induced differences in HDX behavior are ascribed to protein destabilization. Specifically, the thermodynamic stability of the dark-adapted protein is estimated to be 5.5 kJ mol(-1) under the conditions of our work. This value represents the free energy difference between the folded state F and a significantly unfolded conformer U. Illumination reduces the stability of F by 2.2 kJ mol(-1). Mechanical agitation caused by isomerization of the chromophore is transferred to the surrounding protein scaffold, and subsequently, the energy dissipates into the solvent. Light-induced retinal motions therefore act analogously to an internal heat source that promotes the occurrence of TFs. Overall, our data highlight the potential of HDX methods for probing the structural dynamics of molecular machines under "engine on" and "engine off" conditions.  相似文献   

8.
Abstract— The dependence of the isomeric configuration of the retinylidene chromophore of bacteriorhodopsin on the pH value and on the wavelength of irradiation (in a photostationary state) were examined by high performance liquid chromatographic analyses of extracted retinal. The process of isomerization of the chromophore during light adaptation was also traced. More than 93% of all- trans and less than 5% of 13- cis retinal were extracted in the photostationary state for irradiation at 560 nm in the pH region of5–9 as well as for irradiation in the wavelength region of 400–650 nm at pH 7. Comparison of the above photostationary state composition with that of protonated n -butylamine Schiff base of retinal indicates that strong constraint is applied to the chromophore by the apo-protein. The constraint can be changed at low or high pH by a partial denaturation or transition of the apo-protein, which results in the generation of 11- cis retinal in the extract. At higher photon density, the isomerization process of the chromophore during light adaptation at pH 7 was characterized, as extracted isomeric retinal, by (1) the initial decrease in 13- cis and increase in all- trans , (2) a subsequent, transient toward the above photostationary state composition. The results are discussed in terms of both the photoisomerization pattern inherent in the retinylidene chromophore and the control by the apo-protein.  相似文献   

9.
Upon population of its excited state, the retinal chromophore in the membrane protein bacteriorhodopsin (bR) undergoes a sudden (less than approximately 10 fs) change in dipole moment, Deltamu, that can be visualized in a direct way by optical rectification of a broadband visible femtosecond light pulse to the infrared but has not been quantified in this way. Here we show that a transparent thick AgGaS2 crystal delivers infrared radiation with the same spectral profile as bR and is a suitable reference for quantifying conversion efficiency. Using this reference, we estimate the projection of Deltamu on the membrane normal at 11 D, corresponding to the displacement of a full charge over approximately half the length of the retinal chromophore. This result may help to evaluate models describing the interplay between the initial polarization change and the subsequent isomerization of the retinal.  相似文献   

10.
Rhodopsin, the pigment responsible for vision in animals, insect and fish is a typical G protein (guanyl-nucleotide binding protein) consisting of seven transmembrane alpha helices and their interconnecting extramembrane loops. In the case of bovine rhodopsin, the best studied of the visual pigments, the chromophore is 11-cis retinal attached to the terminal amino group of Lys296 through a protonated Schiff base linkage. Photoaffinity labeling with a 3-diazo-4-oxo-retinoid shows that C-3 of the ionone ring moiety is close to Trp265 in helix F (VI) in dark inactivated rhodopsin. Irradiation causes a cis to trans isomerization of the 11-cis double bond giving rise to the highly strained intermediate bathorhodopsin. This undergoes a series of thermal relaxation through lumi-, meta-I and meta-II intermediates after which the retinal chromophore is expelled from the opsin binding pocket. Photoaffinity labeling performed with 3-diazo-4-oxoretinal at -196 degrees C for batho-, -80 degrees C for lumi-, -40 degrees C for meta-I, and 0 degrees C for meta-II rhodopsin showed that in bathorhodopsin the ring is still close to Trp265. However, in lumi-, meta-I and meta-II intermediates crosslinking occurs unexpectedly at A169 in helix D (IV). This shows that large movements in the helical arrangements and a flip over of the ring moiety accompanies the transduction (or bleaching) process. These changes in retinal/opsin interactions are necessarily accompanied by movements of the extramembrane loops, which in turn lead to activation of the G protein residing in the cytoplasmic side. Of the numerous G protein coupled receptors, this is the first time that the outline of transduction pathway has been clarified.  相似文献   

11.
Productive proton pumping by bacteriorhodopsin requires that, after the all-trans to 13-cis photoisomerization of the retinal chromophore, the photocycle proceeds with proton transfer and not with thermal back-isomerization. The question of how the protein controls these events in the active site is addressed here using quantum mechanical/molecular mechanical reaction-path calculations. The results indicate that, while retinal twisting significantly contributes to lowering the barrier for the thermal cis-trans back-isomerization, the rate-limiting barrier for this isomerization is still 5-6 kcal/mol larger than that for the first proton-transfer step. In this way, the retinal twisting is finely tuned so as to store energy to drive the subsequent photocycle while preventing wasteful back-isomerization.  相似文献   

12.
Green fluorescent protein (GFP) mutant S65T/H148D has been proposed to host a photocycle that involves an excited‐state proton transfer between the chromophore (Cro) and the Asp148 residue and takes place in less than 50 fs without a measurable kinetic isotope effect. It has been suggested that the interaction between the unsuspected Tyr145 residue and the chromophore is needed for the ultrafast sub‐50 fs rise in fluorescence. To verify this, we have performed a computer‐aided mutagenic study to introduce the additional mutation Y145F, which eliminates this interaction. By means of QM/MM molecular dynamics simulations and time‐dependent density functional theory studies, we have assessed the importance of the Cro–Tyr145 interaction and the solvation of Asp148 and shown that in the triple mutant S65T/H148D/Y145F a significant loss in the ultrafast rise of the Stokes‐shifted fluorescence should be expected.  相似文献   

13.
    
Bacteriorhodopsin is a retinal-containing protein that functions as a light-driven proton pump. Resonance Raman and femtosecond dynamic absorption spectroscopy are being used to elucidate the molecular mechanism of bacteriorhodopsin. The primary photochemical process is atrans- to-cis isomerization about the C13=C14 bond of the retinal chromophore that has been directly observed using femtosecond dynamic absorption spectroscopy. The excited state isomerization dynamics can be quantitatively analyzed using a new theory for nonstationary state spectroscopy. Resonance Raman vibrational spectroscopy has been used to determine the structure of the chromophore in each of bacteriorhodopsin’s intermediates and to analyze the kinetics of the photocycle. These results are integrated into an explicit molecular model (the C-T Model) for proton pumping in bacteriorhodopsin.  相似文献   

14.
15.
The primary all-trans to 13-cis chromophore isomerization of the light driven chloride pump halorhodopsin has been studied by means of transient absorption spectroscopy in the visible and mid-infrared regime at a time resolution of better than 100 and 220 fs, respectively. The picosecond vibrational dynamics are dominated by two time constants, i.e., 2 and 7.7 ps in accordance with the biphasic decay of the retinal excited electronic state and electronic ground state formation with 1.5 and 6.6 ps. The transient vibrational spectra of the participating electronic states strongly suggest the existence of two distinct S1 populations as a result of an early branching reaction. It is shown that the 13-cis product is formed with the fast time constant, whereas the all-trans educt state is repopulated via both time constants. Concomitant protein dynamics are indicated by spectral changes on a similar time scale in the amide region.  相似文献   

16.
Abstract– Henderson's model of the structure of bacteriorhodopsin has been completed by adding the missing loop regions and by subsequent energy minimization and equilibration (for about 100 ps) at 300 K. Analysis of the structure during a later 20 ps molecular dynamics run showed no significant deviations from the Henderson model. In situ isomerization reactions of the retinal chromophore in bacteriorhodopsin have then been simulated to investigate the chromophore protein interaction for the three isomerization reactions: (i) all-trans→ 13-cis; (ii)all-trans→ 13,14-dicis; and (iii) all-trans→ 13,15-dicis. We find that reaction (iii) which accompanies dark-adaptation of bacteriorhodopsin can proceed in the binding site without any sterical hinderance and involves negligible motions of the covalently bound Lys-216 and other side groups. Reaction (ii) exhibits a somewhat larger but still small energy barrier and involves little rearrangement of Lys-216 and the protein backbone. Reaction (i) experiences a sterical impediment amounting to more than 10 kT at physiological temperatures and also induces significant structural changes at the binding site. Our simulations also reveal that reaction (ii) as a photo-isomerization process can be completed within about 400 fs, whereas reaction (i) requires longer times for completion. Reaction (i) is also accompanied by a co-rotation of the 14–15 bond by 150° (even when a torsional barrier of 20 kcal/mol is imposed to impede rotation of the 14–15 bond) such that photoreactions (i) and (ii), in effect, lead to very similar final geometries. Isomerization (ii) can readily explain the pump mechanism of bacteriorhodopsin: the sequential, thermal back-reaction 13,14-dicis→ 13-cisall-trans can be acid-base catalyzed, i.e., coupled to deprotonation and reprotonation of retinal's Schiff base nitrogen. The orientation of retinal is such that Asp-85 can act as the acceptor and Asp-96 as the (indirect) donor. The thermal back-reaction 13,14-dicis→ all-trans can be coupled to vectorial Cl? ion transport as well.  相似文献   

17.
Photoreceptors are chromoproteins that undergo fast conversion from dark to signaling states upon light absorption by the chromophore. The signaling state starts signal transduction in vivo and elicits a biological response. Therefore, photoreceptors are ideally suited for analysis of protein activation by time-resolved spectroscopy. We focus on plant cryptochromes which are blue light sensors regulating the development and daily rhythm of plants. The signaling state of these flavoproteins is the neutral radical of the flavin chromophore. It forms on the microsecond time scale after light absorption by the oxidized state. We apply here femtosecond broad-band transient absorption to early stages of signaling-state formation in a plant cryptochrome from the green alga Chlamydomonas reinhardtii. Transient spectra show (i) subpicosecond decay of flavin-stimulated emission and (ii) further decay of signal until 100 ps delay with nearly constant spectral shape. The first decay (i) monitors electron transfer from a nearby tryptophan to the flavin and occurs with a time constant of τ(ET) = 0.4 ps. The second decay (ii) is analyzed by spectral decomposition and occurs with a characteristic time constant τ(1) = 31 ps. We reason that hole transport through a tryptophan triad to the protein surface and partial deprotonation of tryptophan cation radical hide behind τ(1). These processes are probably governed by vibrational cooling. Spectral decomposition is used together with anisotropy to obtain the relative orientation of flavin and the final electron donor. This narrows the number of possible electron donors down to two tryptophans. Structural analysis suggests that a set of histidines surrounding the terminal tryptophan may act as proton acceptor and thereby stabilize the radical pair on a 100 ps time scale.  相似文献   

18.
Bacteriorhodopsin (bR) is a retinal protein in purple membrane of Halobacterium salinarum, which functions as a light-driven proton pump. We have detected pressure-induced isomerization of retinal in bR by analyzing 15N cross polarization-magic angle spinning (CP-MAS) NMR spectra of [zeta-15N]Lys-labeled bR. In the 15N-NMR spectra, both all-trans and 13-cis retinal configurations have been observed in the Lys N(zeta) in protonated Schiff base at 148.0 and 155.0 ppm, respectively, at the MAS frequency of 4 kHz in the dark. When the MAS frequency was increased up to 12 kHz corresponding to the sample pressure of 63 bar, the 15N-NMR signals of [zeta-15N]Lys in Schiff base of retinal were broadened. On the other hand, other [zeta-15N]Lys did not show broadening. Subsequently, the increased signal intensity of [zeta-15N]Lys in Schiff base of 13-cis retinal at 155.0 ppm was observed when the MAS frequency was decreased from 12 to 4 kHz. These results showed that the equilibrium constant of [all-trans-bR]/[13-cis-bR] in retinal decreased by the pressure of 63 bar. It was also revealed that the structural changes induced by the pressure occurred in the vicinity of retinal. Therefore, microscopically, hydrogen-bond network around retinal would be disrupted or distorted by a constantly applied pressure. It is, therefore, clearly demonstrated that increased pressure induced by fast MAS frequencies generated isomerization of retinal from all-trans to 13-cis state in the membrane protein bR.  相似文献   

19.
Ben-Nun M  Molnar F  Lu H  Phillips JC  Martínez TJ  Schulten K 《Faraday discussions》1998,(110):447-62; discussion 477-520
The membrane protein bacteriorhodopsin contains all-trans-retinal in a binding site lined by amino acid side groups and water molecules that guide the photodynamics of retinal. Upon absorption of light, retinal undergoes a subpicosecond all-trans-->13-cis phototransformation involving torsion around a double bond. The main reaction product triggers later events in the protein that induce pumping of a proton through bacteriorhodopsin. Quantum-chemical calculations suggest that three coupled electronic states, the ground state and two closely lying excited states, are involved in the motion along the torsional reaction coordinate phi. The evolution of the protein-retinal system on these three electronic surfaces has been modelled using the multiple spawning method for non-adiabatic dynamics. We find that, although most of the population transfer occurs on a timescale of 300 fs, some population transfer occurs on a longer timescale, occasionally extending well beyond 1 ps.  相似文献   

20.
The first steps of the photocycle of the D97N mutant of proteorhodopsin (PR) have been investigated by means of ultrafast transient absorption spectroscopy. A comparison with the primary dynamics of native PR and D85N mutant of bacteriorhodopsin is given. Upon photoexcitation of the covalently bound all-trans retinal the excited state decays biexponentially with time constants of 1.4 and 20 ps via a conical intersection, resulting in a 13-cis isomerized retinal. Neither of the two-deactivation channels is significantly preferred. The dynamics is slowed down in comparison with native PR at pH 9 and reaction rates are even lower than for native PR at pH 6, where the primary proton acceptor (Asp97) is protonated. Therefore, the ultrafast isomerization is not only controlled by the charge distribution within the retinal binding pocket. This study shows that in addition to direct electrostatics other effects have to be taken into account to explain the catalytic function of Asp97 in PR on the ultrafast isomerization reaction. This may include sterical interactions and/or bound water molecules within the retinal binding pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号