首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
From extraction experiments and γ-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+(aq)?+?1·Cs+(nb) ? 1·M+(nb)?+?Cs+(aq) taking place in the two-phase water–nitrobenzene system (M+?=?Li+, Na+, K+, Rb+, H3O+, NH4 +, Tl+; 1?=?beauvericin; aq?=?aqueous phase, nb?=?nitrobenzene phase) were determined. Moreover, the stability constants of the 1·M+ complexes in water-saturated nitrobenzene were calculated; they were found to increase in the series of Rb+?<?Na+, H3O+?<?Tl+?<?NH 4 +? <?K+?<?Li+.  相似文献   

2.
The mechanism of reaction of the di-Ru-substituted polyoxometalate, {??-[(H2O)RuIII(??-OH)2RuIII(H2O)][X n+W10O36]}(8?n)?, I_X, with O2, i.e. I_X?+?O2????{??-[(·O)RuIV(??-OH)2RuIV(O·)][X n+W10O36]}(8?n)??+?2H2O, (1), was studied at the B3LYP density functional and self-consistent reaction field IEF-PCM (in aqueous solution) levels of theory. The effect of the nature of heteroatom X (where X?=?Si, P and, S) on the calculated energies and mechanism of the reaction (1) was elucidated. It was shown that the nature of X only slightly affects the reactivity of I_X with O2, which is a 4-electron oxidation process. The overall reaction (1): (a) proceeds with moderate energy barriers for all studied X??s [the calculated rate-determining barriers are X?=?Si (18.7?kcal/mol)?<?S (20.6?kcal/mol)?<?P (27.2?kcal/mol) in water, and X?=?S (18.7?kcal/mol)?<?P (21.4?kcal/mol)?<?Si (23.1?kcal/mol) in the gas phase] and (b) is exothermic [by X?=?Si [28.7 (22.1) kcal/mol]?>?P [21.4 (9.8) kcal/mol]?>?S [12.3 (5.0) kcal/mol]. The resulting $ \left\{ {\gamma - \left[ {\left( {^{ \cdot } {\text{O}}} \right) {\text{Ru}}^{\text{IV}} \left( {\mu - {\text{OH}}} \right)_{2} {\text{Ru}}^{\text{IV}} \left( {{\text{O}}^{ \cdot } } \right)} \right]\left[ {{\text{X}}^{{{\text{n}} + }} {\text{W}}_{10} {\text{O}}_{36} } \right]} \right\}^{{\left( {8 - {\text{n}}} \right) - }} $ , VI_X, complex was found to have two RuIV?=?O· units, rather than RuV?=?O units. The ??reverse?? reaction, i.e., water oxidation by VI_X is an endothermic process and unlikely to occur for X?=?Si and P, while it could occur for X?=?S under specific conditions. The lack of reactivity of VI_X biradical toward the water molecule leads to the formation of the stable [{Ru 4 IV O4(OH)2(H2O)4}[(??-XW10O36]2}m? dimer. This conclusion is consistent with our experimental findings; previously we prepared the $ \left[ {\left\{ {{\text{Ru}}_{4}^{\text{IV}} {\text{O}}_{4} ({\text{OH}})_{2} \left( {{\text{H}}_{ 2} {\text{O}}} \right)_{4} } \right\}} \right[\left( {\gamma - {\text{XW}}_{10} {\text{O}}_{36} } \right]_{2} \}^{{{\text{m}} - }} $ dimers for X?=?Si (m?=?10) [Geletii et al. in Angew Chem Int Ed 47:3896?C3899, 2008 and J Am Chem Soc 131:17360?C17370, 2009] and P (m?=?8) [Besson et al. in Chem Comm 46:2784?C2786, 2010] and showed them to be very stable and efficient catalysts for the oxidation of water to O2.  相似文献   

3.
The Diels-Alder reaction between substituted anthracenes 1a?1j and 4-phenyl-1,2,4-triazoline-3,5 (2) is studied. In all cases except one, the reaction proceeds on the most active 9,10-atoms of substituted anthracenes. The orthogonality of the two phenyl groups at the 9,10-position of diene 1a is found to shield 9,10-reactive centers. No dienophiles with C=C bonds are shown to participate in the Diels-Alder reaction with 1a; however, the reaction 1a + 2 proceeds with the very active dienophile 2,4-phenyl-1,2,4-triazoline-3,5-dione. It is shown that attachment occurs on the less active but sterically accessible 1,4-reactive center of diene 1a. The structure of adduct 3a is proved by 1H and 13C NMR spectroscopy and X-ray diffraction analysis. The following parameters are obtained for reaction 1a + 2 ? 3a in toluene at 25°C: K eq = 2120 M?1, ΔH f = 58.6 kJ/mol, ΔS f = ?97 J/(mol K), ΔV f = ?17.2 cm3/mol, ΔH b = 108.8 kJ/mol, ΔS b = 7.3 J/(mol K), ΔV b = ?0.8 cm3/mol, ΔH r-n = ?50.2 kJ/mol, ΔS r-n = ?104.3 J/(mol K), ΔV r-n = ?15.6 cm3/mol. It is concluded that the values of equilibrium constants of the reactions 1a?1j + 2 ? 3a?3j vary within 4 × 101?1011 M?1.  相似文献   

4.
Parent dihydropyrene 1 and 2,7-di-tert-butyldihydropyrene 3 are monoprotonated with FSO3H/SO2CIF to give their persistent monoarenium ions 1H + and 3H + by the attack of proton at C-3 (peri to the ethano-bridge not at C-1 as previously suggested). Dihydropyrene 3 is diprotonated in FSO3H.SbF5 1∶1 “Magic Acid”R/SO2CIF to give the symmetrical dication 3H 2 +2, similar diprotonation of 1 with “Magic Acid”/SO2CIF or with FSO3H.SbF5 (4∶1)/SO2CIF gave the diprotonated species 1H 2 +2 in a mixture. NMR characteristics of the mono- and dications are discussed. On raising temperature or on prolonged cold storage, 1H + and 3H + are converted to their corresponding pyrenium cations (2H + and 4H +). Formation of 2H + from 1 is more rapid than conversion of 3 to 4H +. Parent pyrenium cation was independently generated by protonation with FSO3H/SO2CIF. When a mixture of 2 and 1 is reacted with FSO3H/SO2CIF (dry ice/acetone temperature) only 2H + is seen in the NMR (concomitant presence of the radical cation 1 ++ is inferred from EPR). Similar protonation of a mixture of 6-chlorochrysene 5 and 1 with FSO3H/SO2CIF leads to NMR observation of 1H + (with concomitant presence of 5 ++); on raising temperature 1H + is converted to 2H +. The nature of the paramagnetic radical cation (RC) present in the arenium ion samples influences the position, and resolution of the NMR spectra. This approach may prove useful in NMR studies of large polycyclic aromatic hydrocarbons PAHs where concomitant RC formation greatly diminishes the quality of the NMR spectra.  相似文献   

5.
Ten new N-nicotinyl and N-isonicotinyl phosphoramidates with formula XP(O)R2, X?=?Nicotinamide(nia), R?=?NHCH2Ph (1), N(CH3)CH2Ph (2), NHCH(CH3)Ph (3), NH-CH2C4H3O (4), NHCH2(C5H4N) (5), 3-NH-C5H4N (6), and YP(O)R2, Y?=?isonicotinamide(iso), R?=?NHCH2Ph (7), N(CH3)CH2Ph (8), NHCH(CH3)Ph (9), NH-CH2C4H3O (10) plus one new Er(III) complex with formula Er(L)2(NO3)3 (11), L?=?(iso)PO(NHCH2C4H3O)2 (10), were synthesized and characterized by elemental analysis and 1H, 13C, 31P NMR, IR, UV?Cvis spectroscopy. Crystal structures of compounds 10 and 11 were also determined by X-ray crystallography. Interestingly, the 1H NMR spectra of compounds 1, 2, 6, 7, 9 indicated long-range n J P,H (n?=?5,6,7) coupling constants, in the range of 1.4?C1.9?Hz, for the splitting of pyridine ring protons with phosphorus atom. IR results showed that the ??(C=O) values of compounds 7?C10 are greater than those of compounds 1?C5 which means that isonicotinyl moiety is more electron withdrawing than nicotinyl group. X-ray outcomes revealed that in complex 11 three phosphoric triamide ligands have been connected to each Er(III); one from Npyridine and two from P=O donor sites. One of the P=O donor ligands is mono dentate while the other one acts as a bidentate ligand and coordinates to another Er atom via its Npyridine site. By forming complex 11 the P=O and C?CNamide bond lengths of ligand is increased in both, mono and bi dentate, ligands while the C=O bond length is decreased to lower values. These variations are in good agreement with IR results. All H-bonds and electrostatic interactions lead to form a three-dimensional polymeric cluster in the crystal lattice of 10 and 11.  相似文献   

6.
Quantum chemical calculations using DFT (BP86) and ab initio methods (MP2, MP4 and CCSD(T)) have been carried out for the title compounds. The nature of the Pb?CPb interactions has been investigated with an energy decomposition analysis. The energy minimum structures of the halogen substituted Pb2X2 molecules possess a doubly bridged butterfly geometry A like the parent system Pb2H2. The unusual geometry can be explained with the interactions between PbX fragments in the X 2?? ground state which leads to one Pb?CPb electron-sharing ?? bond and two donor?Cacceptor bonds between the Pb?CX bonds as donor and vacant p(??) AOs of Pb. The energy difference between the equilibrium form A and the linear structure XPb??PbX (E) which is a second-order saddle point is much higher when X is a halogen atom than for X?=?H. This is because the a 4???????X 2?? excitation energies of PbX (X?=?F?CI) are higher than for PbH. The structural isomers B, D1, D2, E, F1, F2 and G of Pb2X2 are no minima on the potential energy surface.  相似文献   

7.
A series of BaDyxFe12?xO19 ferrite microfibres have been synthesized from metal nitrates and citric acid by the sol–gel method. TG-DSC, XRD, FTIR, FESEM, TEM and VSM were employed to characterize the thermal decomposition process, crystallite sizes, structure and magnetic properties of ferrite microfibres. The effect of calcined temperature, holding time, ion substitution on structure, magnetic properties of barium ferrite microfibres was investigated. The nanoparticle growth mechanism of ferrite microfibres was discussed. The results indicated that the hexaferrite phase was formed at 750 °C and Dy3+ ions entered the magnetoplumbite lattice. However, the reflections shift to a lower angle and the characteristic peaks of ferrite microfibres in FTIR shift to the lower wavenumber with the Dy content increasing. The VSM results shown that saturation magnetization (M s ) gradually increased with calcined temperature increasing and holding time prolonging, while coercive force (H c ) revealed an increase at first and then decreases. With the Dy content increasing, the M s achieved values of M s  = 50 emu?g?1 (297 K) and 70 emu?g?1 (77 K) and the H c value shown a continuous reduction from 515 kA??m?1 (297 K) and 435 kA?m?1 (77 K) (x = 0.0) to 242 and 215 kA?m?1 (x = 0.4).  相似文献   

8.
Primary processes in the reduction of p-nitroacetophenone (p-NAP) by ascorbic acid (AA) in water photosensitized by thiacyanine dimers M 2 2? have been considered. For M 2 2? , the quantum yields of fluorescence and intersystem crossing to the triplet state (M 2 2? )T increases in comparison to the monomers M?. The dimers (M 2 2? )T enter into the reactions of both one-electron photoreduction by ascorbic acid to give AA and M 2 3? and one-electron photooxidation by p-nitroacetophenone to give p-NAP and the dimeric radical anion M 2 ? which dissociates to M? and M· within 25–30 μs. The primary oxidative or reductive photosensitization in the ternary systems containing (M 2 2? )T, p-NAP, and AA affords p-NAP and AA.  相似文献   

9.
Novel 2,3-bis(1H-pyrrol-2-yl)quinoxaline-functionalized hydrazones were prepared and characterized as new chemosensors for copper(II) ion. The binding properties of the compounds 4, 5, 6 and 7 for cations were examined by UV–vis, fluorescence spectroscopy, and linear sweep voltammetric experiments (LSV). The results indicate that a 1:1 stoichiometric complex is formed between compound 4 (or 5, 6, 7) and copper(II) ion, and the association constant is 1.3?×?105 M?1 for 4, 2.1?×?106 M?1 for 5, 4.1?×?105 M?1 for 6 and 8.0?×?105 M?1 for 7, respectively. The recognition mechanism between compound 4 (or 5, 6, 7) and metal ion was discussed based on their electrochemical properties, absorbance changes, and the fluorescence quenching effect when they interact with each other. Control experiments revealed that compound 4 (or 5, 6, 7) has a highly selective response to copper (II) ion.  相似文献   

10.
Qualitative single crystals of ??-complexes Cu(H+L)(ClO4)]ClO4 · H2O (I), Cu(H+L)(BF4)]BF4 · H2O (II), and [Cu(H+L)(H2O)]SiF6 · H2O (III) are synthesized from solutions of 3-(diallylamino)propanenitrile (L) in propanol, ethanol, and methanol-water acidified with the corresponding acid to pH 3.5?C5 and from the copper(II) salts (Cu(ClO4)2 · 6H2O, Cu(BF4)2 · 6H2O, and CuSiF6 · 4H2O) using the alternating-current electrochemical method on copper wire electrodes. The crystal structures of the complexes are determined. All compounds crystallize in the monoclinic crystal system: complexes I and II are isostructural, space group P21/n, Z = 4. For compound III, space group P21/c, Z = 8. Unit cell parameters: for I a =7.8153(3), b = 16.7824(7), c = 12.4426(5) ?, ?? = 93.410(2)°, V = 1629.1(1) ?3; for II, a = 7.6755(4), b = 16.7119(7), c = 12.3784(6) ?, ?? = 94.354(2)°, V = 1583.2(1); and for III a = 9.826(2), b = 24.009(3), c = 12.061(2) ?, ?? = 91.820(6)°, V = 2843.9(7) ?3. The trigonal pyramidal coordination of the copper atom in complexes I-III is formed by two C=C bonds of the allyl groups of H+L, the nitrile N atom of the adjacent cation of the ligand, and the O or F atom of the ClO 4 ? or BF 4 ? anions. In structure III, the apical position of the pyramid is occupied by the O atom of the water molecule, since the SiF 6 2? anion is considerably remote from the copper(I) atom. However, this anion is bound to the organic cation by hydrogen bonds F??H (2.05?C2.51 ?).  相似文献   

11.
Fast-atom bombardment (FAB) mass spectrometry was used to investigate the interaction of proton and alkali metal ions with dinucleotide analogs such as T-n-T (T = thymine moiety, n = polyether chain, e.g., triethylene, tetraethylene, pentaethylene, and hexaethylene ether 1–4), A-n-T (A = adenine unit 5–8), and T-n-OMe (9–12) in 3-nitrobenzyl alcohol matrix. The [M + H]+ ion is the most abundant ion for the A-n-T series, whereas in 1–4 and 9–12 the (TC2H4)+ ion is the most abundant. Formation of [M + H -C2H4O]+ ions, a characteristic fragmentation of crown ethers under electron ionization, is observed for compounds 1–12 and is more pronounced in 6 and 7. An abundant [M ? H]? ion is observed for all the compounds studied under negative ion FAB due to the presence of the (-CO-NH-CO-) group of thymine, an indication of existence of intramolecular H bonding. The FAB mass spectra of 1–12 with alkali metal ions (Li+, Na+, K+, Rb+, and Cs+) showed formation of abundant metal-coordinated ions ([M + Met]+ and [TC2H4 + Met]+). Compounds 3, 4, 6, 7, and 10–12 showed ions due to the substitution of the thymine moiety by a hydroxyl group ([M + Met ? 108]+, Met = metal ion). For compound 3 alone, substitution of two thymine groups ([M + Met - 216]+) was observed. Metastable ion studies were used to elucidate the structures of these potentially significant ions, and the ion formule were confirmed with high resolution measurements. Selectivity toward metal complexation with ligand size was seen in the T-n-T and A-n-T series and was even more pronounced in A-n-T series. These dinucleotide analogs fall in the following order of chelation of alkali metal ions, acyclic glymes < dinucleotide analogs (acyclic glymes substituted with nitrogen bases) < crown ethers, which places them in perspective as receptor models.  相似文献   

12.
The lower rim functionalized hexahomotrioxacalix[3]arene triamide 4 with cone-conformation was synthesized from triol 1 by a stepwise reaction. The different extractability for alkali metal ions, transition metal ions, and alkyl ammonium ions from water into dichloromethane is discussed. Due to the strong intramolecular hydrogen bonding between the neighboring NH and CO groups in triamide 4, its affinity to metal cations was weakened. Triamide 4 shows a single selectivity to n-BuNH 3 + . The anion complexation of triamide 4 was also studied by 1H NMR titration experiments. Triamide 4 binds halides through the intermolecular hydrogen bonding among the NH hydrogens of amide in a 1:1 fashion in CDCl3. The association constants calculated from these changes in chemical shifts of the amide protons are K a = 223 M?1 for Cl? and K a = 71.7 M?1 for Br?. Triamide 4 shows a preference for Cl? complexation than Br? complexation.  相似文献   

13.
The interaction of Cu(II), Fe(III) and Co(III) with 6,6,13-trimethyl-13-amino-1,4,8,11-tetraazacyclotetradecane (L 3 ) incorporating a pendent amine group has led to isolation of the new octahedral complexes [Cu(HL 3 )(ClO4)2]Cl·H2O (1), [Fe(L 3 )Cl](S2O6)·H2O (2), [Co(L 3 )Cl](ClO4)1.5Cl0.5·0.25H2O (3), [Co(HL 3 )Cl2](ClO4)2·H2O (4) and [Co(L 3 )Cl]2(S2O4)(ClO4)2 (5). In (1) the copper ion occupies the macrocyclic cavity of protonated (–NH3 +) L 3 which is present in its trans-III configuration; weakly bound ClO4 ? ligands occupy the axial positions. The X-ray structure of (2) showed that Fe(III) occupies the N4-macrocyclic cavity of L 3 in a trans-III configuration, with the pendent amine group binding in an axial position. The remaining axial position is occupied by a Cl? ligand. Chromatography of the product obtained from the reaction of Na3[Co(CO3)3] with L 3 yielded three fractions. Fraction 1 yielded crystals (3) composed of three crystallographically independent species incorporating cations of type [Co(L 3 )Cl]2+ with very similar structures; in each case the macrocyclic ring nitrogens of L 3 are bound to the Co(III) in an asymmetric cis-fashion. Fraction 2 yielded the trans-III octahedral cationic complex (4) incorporating L 3 in its protonated form. The Co(III) complex (5) from fraction 3 shows a different coordination arrangement to the products from fractions 1 or 2. The macrocyclic ring coordinates in its trans-III form, but the axial sites in this case are occupied by the pendent-NH2 group and a Cl? ligand.  相似文献   

14.
By reacting calix[4]arene 1,3-bi-hydrazide derivative (2) with formacylferrocene in “1?+?2” condensation mode, novel calix[4]arene derivative bearing two conjugated ferrocene groups (3) was obtained in yield of 88%. By reacting 1,3-bi-substituted [2-(p-formylphenyloxy)ethyloxy]-p-tert-butylcalix[4]arene (5) with 1,1′-diacetylferrocene hydrazone (4) in “1?+?1” condensation mode, novel calix[4]arene derivative with 1,3-substituted large conjugated ferrocene bridge (6) was synthesized in yield of 83%. The structures and conformations of new compounds were confirmed by elemental analyses, IR spectra, ESI-MS, 1H NMR, etc. The electrochemical cyclic voltammetry experiments revealed that compounds 3 and 6 possessed excellent reversible electrochemical properties. The 1H NMR titration study showed that compound 6 possessed excellent complexation abilities for NaH2PO4 and glycine in 1:1 host–guest complex with the association constants of 3,850 and 2,460?M?1, respectively.  相似文献   

15.
Three new isostructural binuclear transition metal complexes with azido ion and 1,2-bis(3-(pyridin-2-yl)-1H-pyrazol-1-yl)ethane (bppe), formulated as [M 2 (N 3 ) 2 (bppe) 2 ](ClO 4 ) 2 (M = Co, 1; Ni, 2; Cu, 3), were successfully synthesized. They were structurally and magnetically characterized. In 1-3, the double azido ions link two adjacent octahedral metal centers together in the end-to-on mode (EO), with the M-N EO -M angles of 99.41°, 100.24° and 99.80°, respectively. The co-ligand bppe acts as terminal ligand to saturate the remaining coordination sites. The magnetic properties of 1-3 have been investigated in the temperature range of 2-300 K. Fitting of the magnetic susceptibility data revealed the occurrence of the strong ferromagnetic interactions [J = 26.32 cm-1 (1), J = 38.23 cm-1 (2) and J = 139.83 cm-1 (3)]. Density functional theory calculations have been performed on 1-3 to provide a magneto-structural correlation of the ferromagnetic behavior.  相似文献   

16.
金国新 《高分子科学》2013,31(5):760-768
A series of half-sandwich group IV metal complexes with tridentate monoanionic phenoxy-imine arylsulfide [O NS] ligand [2-Bu t 4-Me-6-((2-(SC 6 H 5)C 6 H 4 N = CHC 6 H 2 O)](La) and dianionic phenoxy-amine arylsulfide [O N S] ligand [2-Bu t 4-Me-6-((2-(SC 6 H 5)C 6 H 4 N-CH 2 C 6 H 2 O)] 2(Lb) have been synthesized and characterized.Lb was obtained easily in high yield by reduction of ligand La with excess LiAlH 4 in cool diethyl ether.Half-sandwich Group IV metal complexes CpTi[O NS]Cl 2(1a),CpZr[O NS]Cl 2(1b),CpTi[O N S]Cl(2a),CpZr[O N S]Cl(2b) and Cp * Zr[O N S]Cl(2c) were synthesized by the reactions of La and Lb with CpTiCl 3,CpZrCl 3 and Cp * ZrCl 3,and characterized by IR,1 H-NMR,13 C-NMR and elemental analysis.In addition,an X-ray structure analysis was performed on ligand Lb.The title Group IV half-sandwich bearing tridentate [O,N,S] ligands show good catalytic activities for ethylene polymerization in the presence of methylaluminoxane(MAO) as co-catalyst up to 1.58 × 10 7 g-PE.mol-Zr 1.h 1.The good catalytic activities can be maintained even at high temperatures such as 100 ℃ exhibiting the excellent thermal stability for these half-sandwich metal pre-catalysts.  相似文献   

17.
Gas phase decarbonylation and cyclization reactions of protonated N-methyl-N-phenylmethacrylamide and its derivatives (M·H+) were studied by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). MS/MS experiments of M·H+ showed product ions were formed by loss of CO, which could only occur with an amide Claisen rearrangement. Mechanisms for the gas phase decarbonylation and cyclization reactions were proposed based on the accurate m/z measurements and MS/MS experiments with deuterated compounds. Theoretical computations showed the gas phase Claisen rearrangement was a major driving force for initiating gas phase decarbonylation and cyclization reactions of M·H+. Finally, the influence of different phenyl substituents on the gas phase Claisen rearrangement was evaluated. Electron-donating groups at the para-position of the phenyl moiety promoted the gas phase Claisen rearrangement to give a high abundance of fragment ions [M ? CO + H]+. By contrast, electron-withdrawing groups on the phenyl moiety retarded the Claisen rearrangement, but gave a fragment ion at m/z 175 by loss of neutral radicals of substituents on the phenyl, and a fragment ion at m/z 160 by further loss of a methyl radical.  相似文献   

18.
The racemisation ofcyclo-(l-Pro?l-Pro) (2) with metal amides in liq. ammonia was examined. The K-kation causes more extensive racemisation than Na-kation, which in turn is more effective than Li+. This, the racemisation of2 int-butyl alcohol with K+C6H5O? and the data gained from corresponding deuterated medium show that the racemisation of2 proceeds in two steps: in the first, the less stabletrans-cyclo-(l-Pro?d-Pro) (3) is formed, followed by the rapid conversion of3 to a mixture ofcyclo-(l-Pro?l-Pro) andcyclo-(d-Pro?d-Pro) in the second step.  相似文献   

19.
Four 3d-4f heterometallic complexes, [CuⅡ LnⅢ (bpt) 2 (NO 3 ) 3 (MeOH)] (Ln = Gd, 1; Dy, 2; bptH = 3,5-bis(pyrid-2-yl)-1,2,4- triazole), [CuⅡ 2 LnⅢ 2 (μ-OH) 2 (bpt) 4 Cl 4 (H 2 O) 2 ]·6H 2 O (Ln = Gd, 3; Dy, 4), have been synthesized under solvothermal conditions. X-ray structural analyses reveal that 1 and 2 are isostructural while 3 and 4 are isostructural. In each complex, the copper and gadolinium or dysprosium ions are linked by two triazolate bridges and form a CuⅡ -LnⅢ dinuclear unit. The intramolecular Cu-Ln distances are 4.542, 4.525, 4.545 and 4.538 for 1, 2, 3 and 4, respectively. Two dinuclear CuLn units are bridged by two OH- groups into the zig-zag tetranuclear {CuⅡ 2 LnⅢ 2 } structures with the Ln(Ⅲ) Ln(Ⅲ) distances of 3.742 and 3.684 for 3 and 4, respectively. Magnetic studies show that the antiferromagnetic CuⅡ-LnⅢ interactions occur in 1 (J CuGd = 0.21 cm-1 ) and 2. The antiferromagnetic interaction occurs in complex 3 with J CuGd = 0.82 cm-1 and J GdGd = 0.065 cm-1 , while dominant ferromagnetic interaction occurs in complex 4.  相似文献   

20.
Photoionization mass spectrometry was used to investigate the dynamics of ion-neutral complex-mediated dissociations of the n-pentane ion (1). Reinterpretation of previous data demonstrates that a fraction of ions 1 isomerizes to the 2-methylbutane ion (2) through the complex CH3CH+CH 3 · CH2CH3 (3), but not through CH3CH+CH2CH 3 · CH3 (4). The appearance energy for C3Hin 7 + formation from 1 is 66 kJ mol?1 below that expected for the formation of n-C3H 7 + and just above that expected for formation of i-C3H 7 + . This demonstrates that the H shift that isomerizes C3H 7 + is synchronized with bond cleavage at the threshold for dissociation to that product. It is suggested that ions that contain n-alkyl chains generally dissociate directly to more stable rearranged carbenium ions. Ethane elimination from 3 is estimated to be about seven times more frequent than is C-C bond formation between the partners in that complex to form 2, which demonstrates a substantial preference in 3 for H abstraction over C-C bond formation. In 1 → CH3CH+CH2CH3 + CH3 by direct cleavage of the C1–C2 bond, the fragments part rapidly enough to prevent any reaction between them. However, 1 → 2 → 4 → C4H 8 + + CH4 occurs in this same energy range. Thus some of the potential energy made available by the isomerization of n-C4H9 in 1 is specifically channeled into the coordinate for dissociation. In contrast, analogous formation of 3 by 1 → 3 is predominantly followed by reaction between the electrostatically bound partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号