首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 522 毫秒
1.
In recent years, the determination of Cr (VI) has attracted great attention because of its toxicity to human, plants and animals1-5. Usually, in the industrial waste water, the concentration of Cr (VI) is relatively high and should be determined frequently. So, an accurate, quick, and convenient method for the measurement of Cr (VI) in environmental water, as well as in river, lake, sea and tap water, is of great importance. The method for determination of Cr (VI) by diphenylcarbazine …  相似文献   

2.
A voltammetric procedure in the flow system for determination of traces of Cr(VI) in the presence of Cr(III) and humic acid is presented. The calibration graph is linear from 5×10−10 to 1×10−7 mol l−1 for an accumulation time of 120 s. The R.S.D. for 1×10−8 mol l−1 Cr(VI) is 5.3% (n=5). The detection limit estimated from 3σ for a low concentration of Cr(VI) and accumulation time of 120 s is 2×10−10 mol l−1. The method can be used for Cr(VI) determination in the presence of up to 50 mg l−1 of humic acid. The validation of the method was carried out by studying the recovery of Cr(VI) from spiked river water and by the comparison of the results of determination of Cr(VI) in a soil sample. The method cannot be used for analysis of samples containing high concentrations of chloride ions such as seawater and estuarine water.  相似文献   

3.
The aim of the research on Cr-speciation in plasma is to study the distribution of Cr over the plasma proteins. Cr is known to be mainly bound to transferrin and albumin. Therefore, a suitable separation procedure was developed for the two proteins. It consisted of a combination of FPLC cation and anion exchange, ensuring a complete resolution of both proteins and a total recovery of the Cr.In order to investigate the environmental impact of Cr(III) and Cr(VI) discharges, an aqueous reference material is needed to assess the quality of measurement between different laboratories. A pilot study was initiated to investigate the stability of a Cr(III) and Cr(VI) mixture in a bicarbonate/ carbonate buffer. Different parameters liable to influence the stability of the solutions have been investigated.  相似文献   

4.
Speciation of Cr(III) and Cr(VI) can be attained by flow injection analysis with amperometric detection. Cr(VI) is reduced in an acidic medium to Cr(III) with a glassy carbon electrode at —0.1 V vs. Ag/AgCl and the current is recorded. Cr(III) is oxidised on-line to Cr(VI) with alkaline hydrogen peroxide solution. From the difference of the total chromium and Cr(VI), the amount of Cr(III) was obtained. A linear calibration curve for Cr(VI) was obtained for the concentration ranges 0.01-5.0ppm of Cr(VI) and we have calculated the limit of determination to be about 0.5ppb. We have studied the degree of reproducibility obtained using the solid electrodes under various conditions. The influence of flow rate, coil length, interfenences and the extent of reaction were studied.  相似文献   

5.
Abstract

For the Cr(VI) selective separation from biological materials we have developed a highly rapid extraction-separation method with liquid anion exchanger as Amberlite LA-1 or LA-2. The analytical determination of Cr(VI) in organic phase was carried out using electrothermal atomic absorption spectroscopy (ETA-AAS).

After i.v. administration of 0.5 and 2.5mg/kg b.w. of K2Cr2O7 in male Wistar rats the biological samples, collected at different times, were immediately analyzed. Cr(VI) was not detected in whole blood one minute after administration of the lower dose. In blood of rats receiving higher dose an incomplete reduction of Cr(VI) was observed.

Such data demonstrate a highly rapid but limited metabolic capacity of hematic compartment to reduce Cr(VI) to trivalent status.

These results obtained with a new and specific analytical method, confirmed a trigger role of red cells in Cr(VI) metabolism.

“In vitro” incubation of K2Cr2O7 (4 μM) with rat erythrocytes or plasma at 37°C showed a rapid reduction of Cr(VI) in red cells while plasma samples demonstrated a limited reductive power.  相似文献   

6.
A method is presented for the simultaneous determination of Cr(III) and Cr(VI) in yeast using species-specific double-spike isotope dilution (SSDSID) with anion-exchange liquid chromatography (LC) separation and sector field inductively coupled plasma mass spectrometric (SF-ICP-MS) detection. Total Cr is quantitated using ID SF-ICP-MS. Samples were digested on a hot plate at 95±2 °C for 6 h in an alkaline solution of 0.5 M NaOH and 0.28 M Na2CO3 for the determination of Cr(III) and Cr(VI), whereas microwave-assisted decomposition with HNO3 and H2O2 was used for the determination of total Cr. Concentrations of 2,014±16, 1,952±103 and 76±48 mg kg−1 (one standard deviation, n=4, 3, 3), respectively were obtained for total Cr, Cr(III) and Cr(VI) in the yeast sample. Significant oxidation of Cr(III) to Cr(VI) (24.2±7.6% Cr(III) oxidized, n=3) and reduction of Cr(VI) to Cr(III) (37.6±6.5% Cr(VI) reduced, n=3 ) occurred during alkaline extraction and subsequent chromatographic separation at pH 7. Despite this significant bidirectional redox transformation, quantitative recoveries for both Cr(III) and Cr(VI) were achieved using the SSDSID method. In addition, mass balance between total Cr and the sum of Cr(III) and Cr(VI) concentrations was achieved. Method detection limits of 0.3, 2 and 30 mg kg−1 were obtained for total Cr, Cr(VI) and Cr(III), respectively, based on a 0.2-g sub-sample.  相似文献   

7.
间羧基偶氮羧光度法测定痕量铬的研究   总被引:1,自引:0,他引:1  
研究了间羧基偶氮羧与Cr2 O2 -7的褪色反应 ,建立了一种新的测定痕量Cr(VI)的光度方法 .发现其在高氯酸介质中具有高灵敏的褪色反应 ,摩尔吸收系数达到 3 .5× 10 6L/mol·cmCr(VI)量在 0~ 48μg范围内符合比尔定律  相似文献   

8.
This study introduces a sensitive and simple method for selective adsorption of hexavalent chromium, Cr(VI), from water samples prior to its determination by inductively coupled plasma optical emission spectrometry (ICP-OES). The method utilized activated carbon modified with tris(hydroxymethyl)aminomethane (AC-TRIS) as an adsorbent. Surface properties of the new chemically modified AC-TRIS phase were confirmed by Fourier transform infrared (FTIR) spectroscopy. Seven metal ions, including Co(II), Cu(II), Ni(II), Pb(II), Cr(III), Cr(VI), and Fe(III) were evaluated and determined at different pH values (1.0–8.0), except for Fe(III) at pH values (1.0–4.0). Based on the results of the effect of pH on adsorption of these metal ions on AC-TRIS, Cr(VI) was selected for the study of other parameters controlling its maximum uptake on AC-TRIS under batch conditions and at the optimum pH value 1.0. The maximum static adsorption capacity of Cr(VI) onto the AC-TRIS was found to be 43.30 mg g?1 at this pH and after 1 hour contact time. The adsorption data of Cr(VI) were modeled using both Langmuir and Freundlich classical adsorption isotherms. Results demonstrated that the adsorption of Cr(VI) onto AC-TRIS followed a pseudo second-order kinetic model. In addition, the efficiency of this methodology was confirmed by applying it to real environmental water samples.  相似文献   

9.
A rapid, sensitive and selective procedure for determination of Cr(III) and Cr(VI) in environmental and industrial liquid samples via preconcentration with ammonium pyrrolidine dithiocarbamate (APDC) and determination by means of the EDXRF was described. The effect of pH in the range of 3-11 on the recovery of Cr(III) and Cr(VI) has been investigated separately and in combination of these two species. The influence of organic matter, carbonate species and elements V, Mn and Fe on the recovery of each chromium specie (separately/in combination) over whole pH range was also tested in order to simulate condition occurring in natural waters that usually contain certain amount of dissolved organic matter and carbonate ions. Cr(VI) and Cr(III) have shown different behaviors in reaction with APDC at different pH ranges and therefore it is possible to separate those two species. It was found that Cr(VI) creates complex with APDC only in the pH range from 3 to 5 with quantitative recovery (app. 98%) at pH 3, but there was no recovery of Cr(III) at that pH. On the contrary, in pH range from 6 to 11, reaction with Cr(III) and APDC reviled that the only reaction product is Cr(OH)3 instead of the expected Cr(III)-APDC complex. All reaction products were characterized by IR spectroscopy.  相似文献   

10.
A methodology for simultaneous preconcentration and determination of Cr(VI) from aqueous samples was developed using a membrane optode formed by physical inclusion of a Cr(VI) selective chromophore 1,5-diphenylcarbazide (DPC) into a plasticized cellulose triacetate matrix. The inclusion of an anion exchanger (Aliquat-336) was found to be effective for immobilization of both DPC and Cr(VI)-DPC complex in the optode matrix itself. The proportionality in intensity of the magenta color on the optodes loaded with varying amounts of Cr(VI) suggests its potential applications for screening of Cr(VI) in aqueous samples by visual colorimetry. On loading high amounts of Cr(VI) in the membrane optode, its color changes from magenta to yellow, which indicates the possibility of using it as a threshold detector for Cr(VI). The membrane optode was optimized in terms of obtaining maximum preconcentration efficiency for Cr(VI) and subsequent stable optical response proportional to the amount of Cr(VI) in the membrane optode sample. The membrane optodes were tested for Cr(VI) determination in tap water and seawater samples. Using this optode, Cr(VI) even at levels of 13.6 ppb could be quantitatively detected. The optodes developed in the present work were found to be stable, cost effective, easy to prepare and efficient for direct preconcentration and determination of Cr(VI) in a variety of aqueous samples using spectrophotometry. However, this membrane optode is for one time use only as the reaction of Cr(VI) with DPC is irreversible.  相似文献   

11.
A selective novel reverse flow injection system with chemiluminescence detection (rFI-CL) for the determination of Cr(VI) in presence of Cr(III) with Dichlorotris (1,10-phenanthroline)ruthenium(II), (Ru(phen)3Cl2), is described in this work. This new method is based on the oxidation capacity of Cr(VI) in H2SO4 media. First, the Ruthenium(II) complex is oxidized to Ruthenium(III) complex by Cr(VI) and afterwards it is reduced to the excited state of the Ruthenium(II) complex by a sodium oxalate solution, emitting light inside the detector. The intensity of chemiluminescence (CL) is proportional to the concentration of Cr(VI) and, under optimum conditions, it can be determined over the range of 3-300 μg L−1 with a detection limit of 0.9 μg L−1. The RSD was 8.4% and 1.5% at 5 and 50 μg L−1, respectively. For the rFI-CL method various analytical parameters were optimized: flow rate (1 mL min−1), H2SO4 carrier concentration (20% w/V), Ru(phen)3Cl2 concentration (5 mM) and sodium oxalate concentration (0.1 M). The effect of Cr(III), Fe(III), Al(III), Cd(II), Zn(II), Hg(II), Pb(II), Ca(II) and Mg(II), was studied. The method is highly sensitive and selective, allowing a fast, on-line determination of Cr(VI) in the presence of Cr(III). Finally, the method was tested in four different water samples (tap, reservoir, well and mineral), with good recovery percentage.  相似文献   

12.
This study aimed to explore the co-removal effect and mechanism of Cr(VI) and Cd(II) with an optimized synthetic material. The toxicity and accumulation characteristics of Cr(VI) and Cd(II) encountered in wastewater treatment areas present significant challenges. In this work, a rational assembly of sulfide-modified nanoscale zero-valent iron (SnZVI) was introduced into a biochar (BC), and a Cr(VI)–Cd(II) binary system adsorbent with high efficiency was synthesized. When the preparation temperature of the BC was 600 °C, the molar ratio of S/Fe was 0.3, the mass ratio of BC/SnZVI was 1, and the best adsorption capacities of BC-SnZVI for Cr(VI) and Cd(II) in the binary system were 58.87 mg/g and 32.55 mg/g, respectively. In addition, the adsorption mechanism of BC-SnZVI on the Cr(VI)-Cd(II) binary system was revealed in depth by co-removal experiments, indicating that the coexistence of Cd(II) could promote the removal of Cr(VI) by 9.20%, while the coexistence of Cr(VI) could inhibit the removal of Cd(II) by 43.47%. This work provides a new pathway for the adsorption of Cr(VI) and Cd(II) in binary systems, suggesting that BC-SnZVI shows great potential for the co-removal of Cr(VI) and Cd(II) in wastewater.  相似文献   

13.
 A method is described for the quantitative preconcentration and separation of trace chromium in water by adsorption on melamine-urea-formaldehyde resin. Cr(VI) is enriched from aqueous solutions on the resin. After elution the Cr(VI) is determined by FAAS. The capacity of the resin is maximal at ∼ pH 2. Total chromium can be determined by the method after oxidation of Cr(III) to Cr(VI) by hydrogen peroxide. The relative standard deviations (10 replicate analyses) for 10 mg/L levels of Cr(VI), Cr(III) and total chromium were 1.5, 3.5 and 2.8% respectively. The procedure has been applied to the determination and speciation of chromium in lake water, tap water and chromium-plating baths.  相似文献   

14.
《Electroanalysis》2006,18(17):1664-1671
The electrochemical properties of aqueous thionin (an electroactive water soluble dye) of pH 1–12 were investigated by cyclic voltammetry at a boron doped diamond(BDD) electrode. A well defined reversible redox couple was observed in acidic, neutral and alkaline solutions. The standard potential and kinetic parameters for thionin were obtained by fitting experimental cyclic voltammograms to those generated by the DigiSim program. The electrogenerated reduced form of thionin has been used as an efficient organic catalyst for the reduction of Cr(VI) at a BDD electrode immersed in aqueous media. The cyclic voltammetry measurements indicate that an electrocatalytic process occurs, where electrochemically generated thionin reduced species (Leucothionin) is oxidized by Cr(VI) back to the parent thionin species via a EC' reaction mechanism. The determination of catalytic rate constant (Kcat) was accomplished again by fitting experimental cyclic voltammograms with simulated ones.  相似文献   

15.
A study was undertaken to evaluate Saccharomyces cerevisiae as a substrate for the biosorption of Cr(III) and Cr(VI) aiming to the selective determination of these species in aqueous solutions. The yeast cells were covalently immobilised on controlled pore glass (CPG), packed in a minicolumn and incorporated in an on-line flow injection system. The effect of chemical and physical variables affecting the biosorption process was tested in order to select the optimal analytical conditions for the Cr retention by S. cerevisiae. Cr(III) was retained by the immobilised cells and Cr(VI) were retained by CPG. The speciation was possible by selective and sequential elution of Cr(III) with 0.05 mol L−1 HCl and 2.0 mol L−1 HNO3 for Cr(VI). The influence of some concomitant ions up to 20 mg L−1 was also tested. Quantitative determinations of Cr were carried out by means of inductively coupled plasma optical emission spectrometry (ICP OES). Preconcentration factors of 12 were achieved for Cr(III) and 5 for Cr(VI) when 1.7 mL of sample were processed reaching detection limits of 0.45 for Cr(III) and 1.5 μg L−1 for Cr(VI). The speciation of inorganic Cr in different kinds of natural waters was performed following the proposed method. Spiked water samples were also analysed and the recoveries were in all cases between 81 and 103%.  相似文献   

16.
Both the accumulation of coal gangue and potentially toxic elements in aqueous solution have caused biological damage to the surrounding ecosystem of the Huainan coal mining field. In this study, coal gangue was used to synthesize calcium silicate hydrate (C-S-H) to remove Cr(VI) and Cu(II)from aqueous solutions and aqueous solution. The optimum parameters for C-S-H synthesis were 700 °C for 1 h and a Ca/Si molar ratio of 1.0. Quantitative sorption analysis was done at variable temperature, C-S-H dosages, solution pH, initial concentrations of metals, and reaction time. The solution pH was precisely controlled by a pH meter. The adsorption temperature was controlled by a thermostatic gas bath oscillator. The error of solution temperature was controlled at ± 0.3, compared with the adsorption temperature. For Cr(VI) and Cu(II), the optimum initial concentration, temperature, and reaction time were 200 mg/L, 40 °C and 90 min, pH 2 and 0.1 g C-S-H for Cr(VI), pH 6 and 0.07 g C-S-H for Cu(II), respectively. The maximum adsorption capacities of Cr(VI) and Cu(II) were 68.03 and 70.42 mg·g−1, respectively. Furthermore, the concentrations of Cu(II) and Cr(VI) in aqueous solution could meet the surface water quality standards in China. The adsorption mechanism of Cu(II) and Cr(VI) onto C-S-H were reduction, electrostatic interaction, chelation interaction, and surface complexation. It was found that C-S-H is an environmentally friendly adsorbent for effective removal of metals from aqueous solution through different mechanisms.  相似文献   

17.
The flat sheet Raipore R1030 anion exchange membrane has been evaluated as a sample interface in an optical sensor for Cr(VI) monitoring. The R1030 is an anion exchange membrane containing quaternary ammonium groups. The Donnan dialysis (DD) that takes place has been enhanced with facilitated transport of Cr(VI) anions by using a 1,5-diphenylcarbazide (DPC) solution as stripping phase. The DPC acts as a reducing reagent for Cr(VI), and as a complexing reagent for the generated Cr(III). The Cr(III) complex is a strongly absorbing species, and this is the basis of the optical detection. The effect of chemical parameters on Cr(VI) transport has been evaluated. Experiments with UV-VIS detection have shown that the membrane R1030-DPC system exhibits features suitable for Cr(VI) optical sensing. A simplified model based on a kinetic approach is reported describing the transport mechanism of the chemically facilitated DD process.  相似文献   

18.
The kinetics and mechanism of chromic acid oxidation of L‐sorbose in the presence and absence of picolinic acid (PA) have been studied under the conditions, [L‐sorbose]T » [PA]T » [Cr(VI)]T, at different temperatures. In the absence of PA, the monomeric chromic acid undergoes esterification with the substrate followed by the acid catalysed redox decomposition of the Cr(VI)‐substrate ester through glycol splitting to formaldehyde and the lactone of C5‐aldonic acid and Cr(IV) which subsequently participates in the faster reactions. In the presence of PA, the Cr(VI)‐PA complex produced in a pre‐equilibrium step experiences a nucleophilic attack by the substrate to produce a ternary complex which decomposes through glycol splitting giving rise to the organic products and Cr(IV)‐PA complex. Both the uncatalysed and PA‐catalysed paths show the first‐order dependence on [L‐sorbose]T and [Cr(VI)]T. The PA‐catalysed path is first‐order in [PA]T and it shows a fractional order in [H+]. The uncatalysed path shows a second‐order dependence on [H+]. In the presence of the surfactants like N‐cetylpyridinium chloride (CPC, a cationic surfactant) and sodium dodecyl sulfate (SDS, an anionic sulfate), the reaction orders remain unchanged. CPC has been found to inhibit both the uncatalysed and PA‐catalysed paths while SDS shows the rate accelerating effect for both the uncatalysed and PA‐catalysed paths. The observed micellar effects have been rationalised by considering the distribution of the reactants between the micellar and aqueous phases in terms of the proposed reaction mechanism.  相似文献   

19.
The biosorption by cork powder is considered as a promising method for heavy metal removal from industrial waste waters such as chromium tanning factories. The aim of this study is to evaluate the efficiency extent of this method using cork powder as a biosorbent for Cr(VI). The Fourier Transform Infrared spectroscopy (FTIR) analysis permits to distinguish the type of functional groups likely to participate in metal binding. A linear form of BET isotherms for all the three used temperatures (i.e., 25, 35 and 45 °C) and a pseudo-second-order equation of adsorption kinetics are obtained. Other experimental results highlight the meaningful influence of parameters such as contact time, pH, concentration of Cr(VI) and the adsorbent particle size on Cr(VI) adsorption. 97% of Cr(VI) has been removed under definite conditions particularly a particle size of diameter d < 0.08 mm and pH of 2–3 values.  相似文献   

20.
The formation of Cr(VI) in Cr(III) tanned leather, in neutral and alkaline solution, has been demonstrated by means of crossed experiments using different pH buffers, ethylenediaminetetraacetic acid as Cr(III) complexing agent and NaCl solutions. According to the found results the composition of the extracting solution suitable to extract Cr(VI) amount present in leather was pH 4.4 (which is also the tanned leather natural pH) and 5% NaCl (w/v). Interferences coming from coloured compounds have been eliminated with suitable SPE cartridges. A new protocol for the analysis of Cr(VI) based on ion chromatography and a diphenylcarbazide post-column reaction has been implemented. The use of a large volume injection loop (500 μl) allowed to obtain a very low quantification limit (0.15 mg kg−1) despite the low amount of leather extracted (0.2 g with respect to 2.0 g used by the IUC 18 official method). Evidence of the transient nature of Cr(VI) in leather requires using the external calibration procedure for the correct quantification of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号