首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
4 /air flames where CH concentration is on the order of 1 ppm based on flamelet calculations. The present experimental conditions are also examined and shown to be suitable for quantitative measurements of CH radical based on the two-level model analysis. A linear relationship can be found between the measured CH signal intensity and the calculated CH concentration within a maximum 30% uncertainty range. The FWHM thickness of the CH profile in a stoichiometric laminar methane flame was shown to be less than 0.3 mm, which is the smallest ever achieved. Simultaneous image pairs of flame temperature and concentration of CH radicals from a premixed turbulent Bunsen flame at an exit velocity of 65 m/sec are obtained to demonstrate the system superiority of application on high-speed reacting flows. Received: 29 January 1996/Revised Version: 3 May 1996  相似文献   

2.
Received: 7 May 1996/Revised version: 21 October 1996  相似文献   

3.
This paper presents experimental evidence that using the KrF excimer laser for quantitative laser-induced fluorescence (LIF) studies of the OH A-X (3,0) system is highly problematic if the effects of both photobleaching and photochemistry are not included for laser spectral irradiances greater than 20 MW/cm2 cm-1. Pump-probe and time-resolved measurements of the OH LIF signal in an atmospheric pressure, premixed CH4-air flame at low- and high-laser-spectral-irradiance conditions show that a significant amount of OH is produced from photofragments resulting from the simultaneous 2-photon predissociation of H2O molecules in the C-X system. A 5+2-level rate-equation model that includes the effects of both photobleaching and photochemical OH production is shown to satisfactorily predict the data using a single adjustable parameter given by the effective, spectrally integrated 2-photon cross-section of H2O near 248 nm. The time-integrated OH LIF signal was found to depend on both the laser spectral irradiance and the local concentration of H2O. Additionally, use of the KrF excimer laser for 2-line rotational thermometry can produce temperature errors as great as +550 K at high laser-pulse energies. Received: 21 August 2000 / Revised version: 30 October 2000 / Published online: 21 February 2001  相似文献   

4.
jet =18600). Here, PLIF images reveal a CH layer of thickness typically <1 mm from flame base to tip. Furthermore, in these permanently blue flames, we observe instantaneous flamefront strain rates – derived from the PIV data – in excess of ±104 s-1 without flame extinction. Received: 16 October 1997/Revised version: 30 October 1997  相似文献   

5.
Laser-induced fluorescence of OH (A 2Σ+, v’=1) was measured in hydrogen/oxygen and hydrogen/air/nitrogen flames using laser pulses of 80 psec duration. A 2D signal acquisition scheme simultaneously employed wavelength, temporal, and polarization resolution. The signals emitted in different rotational branches exhibit polarization-dependent intensities, depending on the rotational branch of the absorption line used. It is possible to select experimental conditions such that rotational and vibrational relaxation as well as electronic quenching can be monitored simultaneously. Advantages and limitations of the experimental approach are discussed. Numerical simulations are presented of the LIF spectra affected by energy transfer. Received: 29 March 1999 / Revised version: 14 June 1999 / Published online: 27 October 1999  相似文献   

6.
We have studied the use of wide-band detection in conjunction with saturation of a rovibronic transition of OH within itsA 2 +X 2(0,0) band. For wide-band detection, in which fluorescence is detected from the entire excited rotational manifold, the fluorescence yield is sensitive to collisions in two ways. First, it is sensitive to the ratio of rate coefficients describing rotational energy transfer and electronic quenching; this ratio determines the number of neighboring rotational levels that are populated during the laser pulse. Second, the fluorescence yield can vary with the total collisional rate coefficient; only after a sufficient number of collisions, corresponding to 2.5 ns in an atmospheric flame, does the rotational manifold reach steady state. We also compare measurements employing wide-band (detecting theR 1 andR 2 branches) and narrow-band (detecting a single transition) saturated fluorescence of OH. Over a wide range of conditions — obtained by varying the equivalence ratio, temperature, N2 dilution, and pressure — the wide- and narrow-band fluorescence techniques compare well. Given this good agreement, wide-band saturated fluorescence could be especially useful for analyzing atmospheric flames with XeCl-excimer lasers; one can potentially obtain 2—D images of OH which have a high signal-to-noise ratio and a reduced sensitivity to laser irradiance and quenching.  相似文献   

7.
2 at 1064 nm, vaporization/fragmentation of soot primary particles and aggregates occurs. Optical measurements are performed using a second laser pulse to probe the effects of these changes upon the LII signal. With the exception of very low fluences, the structural changes induced in the soot lead to a decreased LII intensity produced by the second laser pulse. These two-pulse experiments also show that these changes do not alter the LII signal on timescales less than 1 μs for fluences below the vaporization threshold. Received: 20 October 1997/Revised version: 16 February 1998  相似文献   

8.
Laser diagnostics of NO reburning in fuel-rich propene flames   总被引:1,自引:0,他引:1  
Absolute NO concentrations were measured by laser-induced fluorescence (LIF) in three different fuel-rich non-sooting propene flames (φ=1.5, 1.8 and 2.3). The experiments were performed in low-pressure premixed propene flames with 0.2%-1% NO added. Laser diagnostics was applied as a tool for investigating reburn chemistry. The Q2(25.5) line in the A-X(0,0) band was excited because of the small temperature dependence of its ground state population. The NO fluorescence lifetimes were measured directly and compared to theoretical values. The initial NO levels are strongly reduced in all three flames. According to modeling results, the HCN mole fraction increases strongly with stoichiometry. As guidelines for laser diagnostics applications in such systems, the modeling results were analyzed with respect to the main reaction channels and reaction partners in fuel-rich flames. Received: 1 March 2000 / Revised version: 20 April 2000 / Published online: 20 September 2000  相似文献   

9.
We describe photochemical production of C2 in the upper (d 3g) and the lower (a 3u) levels of the Swan-band transitions by 266 and 292-nm laser irradiation of flames and room-temperature flows of acetylene and ethylene. Topics treated include the spectroscopy of the Swan bands, lifetimes and quenching of the Swan-band emission, intensity dependences of the Swan-band emission in several environments, profiles of C2 in low-pressure hydrocarbon flames, and the affect of Swan-band emission on three-photon-excited fluorescence detection of atomic hydrogen in hydrocarbon flames.This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences  相似文献   

10.
2 H2O2). Laser-induced fluorescence spectra from glyoxal vapor using the same excitation wavelength of 428 nm showed the same strongest lines as the signal from the flame. Glyoxal was visualized in two different modes; two-dimensional imaging and a spatial-spectral mode where spectra were obtained at different spatial positions in the flame simultaneously. For the premixed laminar rich flame it is shown that glyoxal is produced early in the flame, before the signals for C2 and CH appear. For the turbulent non-premixed flames it is shown that glyoxal is produced in a layer on the fuel rich side of the flames. Here the fuel is premixed with ambient air. This layer is thin and has a high spatial resolution. The general trend was that the glyoxal signal appeared in regions with a lower temperature compared with the emission from C2 and CH. The imaging of glyoxal in turbulent acetylene flames is a promising tool for achieving new insight into flame phenomena, as it gives very good structural information on the flame front. Tests so far do not indicate that the detected glyoxal is a result of photo-production. To our knowledge, this is the first detection of glyoxal in flames using laser-induced fluorescence. Received: 19 December 1996/Revised version: 26 May 1997  相似文献   

11.
We report a series of Raman-Rayleigh-LIF measurements in two turbulent natural-gas jet diffusion flames produced by the Delft piloted jet diffusion flame burner. The main objective of the Raman-Rayleigh-LIF measurements was to obtain detailed information on the major species concentrations in the flames. The measurements provide simultaneous data on temperature, the concentrations of the major species and the radicals OH and NO and mixture fraction. The application of the Raman technique in the undiluted natural-gas flames proves to be very challenging because of the high fluorescence interference levels. The interference contributions to the recorded Raman signals are identified and subtracted using empirical correlations between the Raman signals and the signals on fluorescence interference monitor channels. The calibration and data reduction of the Raman-Rayleigh and LIF signals are discussed in detail. The resulting dataset compares excellently with data from previous experiments. Because the Raman-Rayleigh-LIF data provide quantitative concentrations and accordingly quantitative mixture fractions, they form a valuable and useful extension of the existing database for the Delft piloted jet diffusion flame burner. Received: 19 October 1999 / Revised version: 31 January 2000 / Published online: 7 June 2000  相似文献   

12.
It has been described earlier that imaging measurements of laser-induced fluorescence (LIF) in flames can be calibrated to number densities with an integrated absorption measurement provided the integrated absorption is small. In this paper a method is presented that extends the technique to flames with substantial absorption, improves the number density determination and allows the experimental parameters to be chosen more freely. The method is based on an iterative computer procedure that reconstructs the 1-D spatially resolved absorption profile from laser measurements of the 1-D spatially resolved LIF and the integrated absorption of the laser beam. The technique is experimentally demonstrated by measurements of OH number densities in atmospheric flames. It is potentially a single-pulse method. Other applications of the iterative procedure are mentioned.  相似文献   

13.
14.
Phase diagram for diamond growth in atmospheric oxyacetylene flames   总被引:1,自引:0,他引:1  
2 /C2H2 ratio for diamond synthesis in oxyacetylene flames can be theoretically predicted. When the substrate temperature is between 1000 K and 1250 K, the corresponding O2/C2H2 ratio range is about between 0.8 and 1.1. The suitable range of substrate temperature is widest for O2/C2H2 ratio close to unity and is narrowed rapidly when the flow ratio deviates from unity. Received: 2 March 1997/Accepted: 17 July 1997  相似文献   

15.
Using laser-induced fluorescence (LIF), spatially resolved concentration profiles of formaldehyde (H2CO) were obtained in the preheating zone of atmospheric-pressure premixed CH4/air flames stabilized on the central slot of a multiple-slot burner similar in construction to domestic boilers. The isolated pQ1(6) rotational line (339.23 nm) in the 21 041 0 vibronic combination transition in the ?1A2- 1A1 electronic band system around 339 nm was excited in the linear LIF intensity regime. For a quantification of quenching effects on the measured LIF signal intensities, relative fluorescence quantum yields were determined from direct fluorescence lifetime as a function of height above the slot exit. Absolute H2CO number densities in the flames were evaluated from a calibration of measured LIF signal intensities versus those obtained in a low-pressure sample with a known H2CO vapor pressure. Peak concentrations in the slightly lean and rich flames reached (994±298) and (174±52) ppm, respectively. Received: 25 September 2000 / Published online: 30 November 2000  相似文献   

16.
Nitrogen atoms have been detected in stoichiometric flat premixed H2/O2/N2 flames at 33 and 96 mbar doped with small amounts of NH3, HCN, and (CN)2 using two-photon laser excitation at 211 nm and fluorescence detection around 870 nm. The shape of the fluorescence intensity profiles versus height above the burner surface is markedly different for the different additives. Using measured quenching rate coefficients and calibrating with the aid of known N-atom concentrations in a discharge flow reactor, peak N-atom concentrations in these flames are estimated to be on the order of 1012–5×1013 cm–3; the detection limit is about 1×1011 cm–3.  相似文献   

17.
The measurement of fluorescence lifetimes is important for determining minor-species concentrations in flames when using linear laser-induced fluorescence (LIF). Applications of LIF to turbulent flames require that the quenching rate coefficient be determined in less than ∼100 μs. Moreover, the measurement technique must be insensitive to the existence of relatively large backgrounds, such as occur from flame emission. To meet these goals, we have recently developed a rapid, gated photon-counting technique, termed LIFTIME. However, for ultimate application to turbulent time-series measurements, LIFTIME must be extended to photon count rates which unfortunately result in nonlinear discriminator operation. In this paper, a correction technique is derived to permit quantitative measurements of fluorescence lifetimes and concentrations at sampling rates up to 4 kHz. The technique was tested against liquid samples having a known lifetime and is further shown to reproduce previous hydroxyl concentration measurements in a series of laminar flames with total photon count rates of up to ∼35 million detected photoelectrons per second. The fluorescence lifetimes and hydroxyl concentrations are shown to be measured with ∼10% accuracy (68% confidence interval) for sampling times as low as 250 μs. Received: 9 October 1998 / Revised version: 30 December 1998 / Published online: 28 April 1999  相似文献   

18.
Spectrally resolved visible and ultraviolet emissions are investigated as a basis for wide-range, individual-cycle measurement of the local fuel concentration in spark-ignition engines. The 388-nm CN emission intensity, normalized by the spark-discharge energy during the observation interval (typically 150 μs at the start of the glow discharge), is found to be the most useful measure of fuel concentration when data are required over a wide range. Calibration data for homogeneous propane–air and isooctane–air mixtures over a wide range of cylinder gas conditions at the time of ignition collapse to a single curve when the fuel concentration is expressed in terms of the number density of carbon atoms. The carbon number densities measured in this study correspond to fuel–air equivalence-ratios in the range 0–3 at 95% throttle conditions. Random and systematic errors are 10% or less. Applied to an engine in which liquid fuel is injected directly into the cylinder, the technique reveals substantial cyclic fluctuations in the fuel concentration at the spark gap for early fuel injection (intended to produce a homogeneous fuel–air mixture in the combustion chamber) and large fuel-concentration fluctuations for late fuel injection (which produces a highly stratified mixture). The results also show that for stratified operation with a fixed fuel-injection timing, a spark timing that is later than optimum leads to incomplete combustion in many cycles due to fuel–air ratios that are too lean for good ignition and rapid flame development. Received: 6 November 2001 / Revised version: 6 May 2002 / Published online: 25 September 2002 RID="*" ID="*"Corresponding author. Fax: +1-586/986 0176, E-mail: todd.fansler@gm.com  相似文献   

19.
This report summarizes several recent applications of quantitative laser-induced fluorescence techniques for the determination of species concentrations and temperature in combustion processes. Several lines of further development are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号