首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investigated using the APSYS simulation software. It is found that the structure with a p-AlInN electron blocking layer showes improved light output power, lower current leakage, and smaller efficiency droop. Based on numerical simulation and analysis, these improvements of the electrical and optical characteristics are mainly attributed to the efficient electron blocking in the InGaN/GaN multiple quantum wells (MQWs).  相似文献   

2.
InGaN-based light-emitting diodes with p-GaN and p-AlGaN hole injection layers are numerically studied using the APSYS simulation software.The simulation results indicate that light-emitting diodes with p-AlGaN hole injection layers show superior optical and electrical performance,such as an increase in light output power,a reduction in current leakage and alleviation of efficiency droop.These improvements can be attributed to the p-AlGaN serving as hole injection layers,which can alleviate the band bending induced by the polarization field,thereby improving both the hole injection efficiency and the electron blocking efficiency.  相似文献   

3.
4.
GaN/InGaN superlattice barriers are used in InGaN-based light-emitting diodes (LEDs). The electrostatic field in the quantum wells, electron hole wavefunction overlap, carrier concentration, spontaneous emission spectrum, light-current performance curve, and internal quantum efficiency are numerically investigated using the APSYS simulation software. It is found that the structure with GaN/InGaN superlattice barriers shows improved light output power, and lower current leakage and efficiency droop. According to our numerical simulation and analysis, these improvements in the electrical and optical characteristics are mainly attributed to the alleviation of the electrostatic field in the active region.  相似文献   

5.
汪莱  王嘉星  赵维  邹翔  罗毅 《中国物理 B》2010,19(7):76803-076803
Blue In0.2Ga0.8N multiple quantum wells (MQWs) with InxGa1 - xN (x=0.01-0.04) barriers are grown by metal organic vapour phase epitaxy. The internal quantum efficiencies (IQEs) of these MQWs are studied in a way of temperature-dependent photoluminescence spectra. Furthermore, a 2-channel Arrhenius model is used to analyse the nonradiative recombination centres (NRCs). It is found that by adopting the InGaN barrier beneath the lowest well, it is possible to reduce the strain hence the NRCs in InGaN MQWs. By optimizing the thickness and the indium content of the InGaN barriers, the IQEs of InGaN/InGaN MQWs can be increased by about 2.5 times compared with conventional InGaN/GaN MQWs. On the other hand, the incorporation of indium atoms into the intermediate barriers between adjacent wells does not improve IQE obviously. In addition, the indium content of the intermediate barriers should match with that of the lowest barrier to avoid relaxation.  相似文献   

6.
吕玫  张丽  张彦  袁明鉴 《中国光学》2021,(1):117-134
量子点发光二极管(QLEDs)由于具有独特的光电特性,可应用于照明和显示行业,其外量子效率(EQEs)正迅速接近商业化要求.然而,器件的稳定性和工作寿命仍然是QLEDs商业化应用面临的关键问题.本文将影响QLEDs寿命的主要因素分为功能层材料的稳定性和电荷注入不平衡两大方面,从提高量子点、电荷传输层(CTLs)的稳定性...  相似文献   

7.
A sawtooth-shaped electron blocking layer is proposed to improve the performance of light-emitting diodes (LEDs). The energy band diagram, the electrostatic field in the quantum well, the carrier concentration, the electron leakage, and the internal quantum efficiency are systematically studied. The simulation results show that the LED with a sawtooth-shaped electron blocking layer possesses higher output power and a smaller efficiency droop than the LED with a conventional A1GaN electron blocking layer, which is because the electron confinement is enhanced and the hole injection efficiency is improved by the appropriately modified electron blocking layer energy band.  相似文献   

8.
In this study,the efficiency droop of an InGaN light-emitting diode(LED)is reduced significantly by using a pAlGaN/GaN superlattice last quantum barrier.The reduction in efficiency droop is mainly caused by the decrease of electron current leakage and the increase of hole injection efficiency,which is revealed by investigating the light currents,internal quantum efficiencies,energy band diagrams,carrier concentrations,carrier current densities,and radiative recombination efficiencies of three LED structures with the advanced physical model of semiconductor device(APSYS).  相似文献   

9.
In this study, the efficiency droop of an InGaN light-emitting diode (LED) is reduced slgnlncanUy oy using a p-AlGaN/GaN superlattice last quantum barrier. The reduction in efficiency droop is mainly caused by the decrease of electron current leakage and the increase of hole injection efficiency, which is revealed by investigating the light currents, internal quantum efficiencies, energy band diagrams, carrier concentrations, carrier current densities, and radiative recombination efficiencies of three LED structures with the advanced physical model of semiconductor device (APSYS).  相似文献   

10.
陈峻  范广涵  张运炎 《物理学报》2012,61(17):178504-178504
采用软件理论分析的方法对渐变型量子阱垒层厚度的InGaN双波长发光二极(LED)的载流子浓度分布、 能带结构、自发发射谱、内量子效率、发光功率及溢出电子流等进行研究.分析结果表明, 增大量子阱垒层厚度会影响空穴在各量子阱的注入情况, 对双波长LED各量子阱中空穴浓度分布的 均衡性及双波长发光光谱的调控起到一定作用,但会导致内量子效率严重下降; 而当以特定的方式从n电极到p电极方向递减渐变量子阱垒层厚度时, 活性层量子阱的溢出电子流 得到有效的控制, 双发光峰强度达到基本一致, 同时芯片的内量子效率下降得到了有效控制, 且具备大驱动电流下较好的发光特性.  相似文献   

11.
利用金属有机物化学气相沉积系统在蓝宝石衬底上通过有源层的变温生长,得到In组分渐变的量子阱结构,从而获得具有三角形能带结构的InGaN/GaN多量子阱发光二极管(LED)(简称三角形量子阱结构LED).变温光致发光谱结果表明,相对于传统具有方形能带结构的量子阱LED(简称方形量子阱结构LED),三角形量子阱结构有效提高了量子阱中电子和空穴波函数的空间交叠,从而增加了LED的内量子效率;电致发光谱结果表明,三角形量子阱结构LED器件与传统结构LED器件相比,明显改善了发光峰值波长随着电流的蓝移现象.通过以上  相似文献   

12.
GaN-based light-emitting diodes (LEDs) with surface-textured indium tin oxide (ITO) as a transparent current spreading layer were fabricated.The ITO surface was textured by inductively coupled plasma (ICP) etching technology using a monolayer of nickel (Ni) nanoparticles as the etching mask.The luminance intensity of ITO surface-textured GaN-based LEDs was enhanced by about 34% compared to that of conventional LED without textured ITO layer.In addition,the fabricated ITO surface-textured GaN-based LEDs would present a quite good performance in electrical characteristics.The results indicate that the scattering of photons emitted in the active layer was greatly enhanced via the textured ITO surface,and the ITO surface-textured technique could have a potential application in improving photoelectric characteristics for manufacturing GaN-based LEDs of higher brightness.  相似文献   

13.
陈峻  范广涵  张运炎  庞玮  郑树文  姚光锐 《中国物理 B》2012,21(5):58504-058504
The performance of InGaN blue light-emitting diodes(LEDs) with different kinds of electron-blocking layers is investigated numerically.We compare the simulated emission spectra,electron and hole concentrations,energy band diagrams,electrostatic fields,and internal quantum efficiencies of the LEDs.The LED using AlGaN with gradually increasing Al content from 0% to 20% as the electron-blocking layer(EBL) has a strong spectrum intensity,mitigates efficiency droop,and possesses higher output power compared with the LEDs with the other three types of EBLs.These advantages could be because of the lower electron leakage current and more effective hole injection.The optical performance of the specifically designed LED is also improved in the case of large injection current.  相似文献   

14.
In this report, we designed a light emitting diode (LED) structure in which an N-polar p-GaN layer is grown on top of Ga-polar In0.1Ga0.9N/GaN quantum wells (QWs) on an n-GaN layer. Numerical simulation reveals that the large polarization field at the polarity inversion interface induces a potential barrier in the conduction band, which can block electron overflow out of the QWs. Compared with a conventional LED structure with an Al0.2Ga0.8N electron blocking layer (EBL), the proposed LED structure shows much lower electron current leakage, higher hole injection, and a significant improvement in the internal quantum efficiency (IQE). These results suggest that the polarization induced barrier (PIB) is more effective than the AlGaN EBL in suppressing electron overflow and improving hole transport in GaN-based LEDs.  相似文献   

15.
垂直结构多色量子点LED(QD-LED)最新进展   总被引:1,自引:0,他引:1  
张文君  许键  翟保才 《光学技术》2012,38(5):539-544
量子点LED以胶体量子点为发光层,通过调节作为发光层量子点的尺寸可以制作出覆盖可见(380-780nm)以及近红外光谱的量子点LED(QD-LED),而且量子点LED器件发出的光谱范围很窄,其光谱半高宽可达30nm。简述了当今国内外关于QD-LED器件结构的研究成果以及器件的制作工艺,介绍了目前课题组最新的一些相关成果。重点阐述了目前已经得到验证的几种量子点器件结构,分析了其存在的优缺点,这些结论对进一步改进QD-LED的结构以及使其可以更有利于商业化提供了参考。  相似文献   

16.
We have fabricated very high-quality In0.13Ga0.87N/GaN multiple quantum wells with thickness as small as on (0 0 0 1) sapphire substrate using metal organic chemical vapour deposition (MOCVD). We have investigated these ultra-thin multiple quantum wells by continuous wave (cw) and time resolved spectroscopy in the picosecond time scales in a wide range of temperatures from 10 K to 290 K. In the luminescence spectrum at 10 K we observed a broad peak at 3.134 eV which was attributed to the quantum wells emission of InGaN. The full-width at half-maximum of this peak was 129 meV at 10 K and the broadening at low temperatures which was mostly inhomogeneous was thought to be due to compositional fluctuations and interfacial disorder in the alloy. The ultra narrow width of the quantum well was found to have a very profound effect in increasing the emission linewidth. We also observed an intense and narrow peak at 3.471 eV due to the GaN barrier. The temperature dependence of the luminescence was studied. The peak positions and intensities of the different peaks were obtained after a careful Lorentzian analysis. The activation energy of the InGaN quantum well emission peak was estimated as 69 meV. The lifetime of the quantum well emission was found to be 720 ps at 10 K. The results were explained by considering the localization of the excitons due to potential fluctuations. At higher temperatures the non-radiative recombination was found to be very dominant.  相似文献   

17.
The advantages of a GaN–AlGaN–InGaN last quantum barrier(LQB) in an InGaN-based blue light-emitting diode are analyzed via numerical simulation. We found an improved light output power, lower current leakage, higher recombination rate, and less efficiency droop compared with conventional GaN LQBs. These improvements in the electrical and optical characteristics are attributed mainly to the specially designed GaN–AlGaN–InGaN LQB, which enhances electron confinement and improves hole injection efficiency.  相似文献   

18.
时强  李路平  张勇辉  张紫辉  毕文刚 《物理学报》2017,66(15):158501-158501
GaN/In_xGa_(1-x)N型最后一个量子势垒结构能有效提高发光二极管(LED)器件内量子效率,缓解LED效率随输入电流增大而衰减的问题.本文综述了该结构及其结构变化——In组分梯度递增以及渐变、GaN/In_xGa_(1-x)N界面极化率改变等对改善LED器件性能的影响及优势,归纳总结了不同结构的GaN/In_xGa_(1-x)N型最后一个量子垒的工作机理,阐明极化反转是该结构提高LED性能的根本原因.在综述该结构发展的基础之上,通过APSYS仿真计算,进一步探索和深入分析了该结构中In_xGa_(1-x)N层的In组分及其厚度变化对LED内量子效率的影响.结果表明:In组分的增加有助于在GaN/In_xGa_(1-x)N界面产生更多的极化负电荷,增加GaN以及电子阻挡层处导带势垒高度,减少电子泄漏,从而提高LED的内量子效率;但GaN/In_xGa_(1-x)N型最后一个量子势垒中In_xGa_(1-x)N及GaN层厚度的变化由于会同时引起势垒高度和隧穿效应的改变,因而In_xGa_(1-x)N和GaN层的厚度存在一个最佳比值以实现最大化的减小漏电子,提高内量子效率.  相似文献   

19.
The quest for higher modulation speed and lower energy consumption has inevitably promoted the rapid development of semiconductor-based solid lighting devices in recent years. GaN-based light-emitting diodes (LEDs) have emerged as promising candidates for achieving high efficiency and high intensity, and have received increasing attention among many researchers in this field. In this paper, we use a self-assembled array-patterned mask to fabricate InGaN/GaN multi- quantum well (MQW) LEDs with the intention of enhancing the light-emitting efficiency. By utilizing inductively coupled plasma etching with a self-assembled Ni cluster as the mask, nanopillar arrays are formed on the surface of the InGaN/GaN MQWs. We then observe the structure of the nanopillars and find that the V-defects on the surface of the conventional structure and the negative effects of threading dislocation are effectively reduced. Simultaneously, we make a comparison of the photoluminescence (PL) spectrum between the conventional structure and the nanopillar arrays, achieved under an experimental set-up with an excitation wavelength of 325 mm. The analysis demonstrates that MQW-LEDs with nanopillar arrays achieve a PL intensity 2.7 times that of conventional LEDs. In response to the PL spectrum, some reasons are proposed for the enhancement in the light-emitting efficiency as follows: 1) the improvement in crystal quality, namely the reduction in V-defects; 2) the roughened surface effect on the expansion of the critical angle and the attenuated total reflection; and 3) the enhancement of the light-extraction efficiency due to forward scattering by surface plasmon polariton modes in Ni particles deposited above the p-type GaN layer at the top of the nanopillars.  相似文献   

20.
李强  李虞锋  张敏妍  丁文  云峰 《中国物理 B》2016,25(11):117102-117102
We have investigated the factors affecting the current spreading length(CSL) in GaN-based light-emitting diodes(LEDs) by deriving theoretical expressions and performing simulations with APSYS.For mesa-structure LEDs,the effects of both indium tin oxide(ITO) and n-GaN are taken into account for the first time,and a new Q factor is introduced to explain the effects of different current flow paths on the CSL.The calculations and simulations show that the CSL can be enhanced by increasing the thickness of the ITO layer and resistivity of the n-GaN layer,or by reducing the resistivity of the ITO layer and thickness of the n-GaN layer.The results provide theoretical support for calculating the CSL clearly and directly.For vertical-structure LEDs,the effects of resistivity and thickness of the CSL on the internal quantum efficiency(IQE) have been analyzed.The theoretical expression relating current density and the parameters(resistivity and thickness)of the CSL is obtained,and the results are then verified by simulation.The IQE under different current injection conditions is discussed.The effects of CSL resistivity play a key role at high current injection,and there is an optimal thickness for the largest IQE only at a low current injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号