首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The structural and magnetic properties of Pr0.75Na0.25MnO3 have been investigated experimentally. At room temperature, the compound shows paramagnetic characteristic. Along with decreasing temperature, a peak appears in the magnetization versus temperature curve around 220 K. To clarify whether this peak is associated with the ordering arrangement of Mn3+ and Mn4+ ions, electron diffraction experiments were carried out below and above 220 K respectively. Only basic Brag diffraction spots can be observed at high temperatures, however, superlattice diffraction appears below 220 K. This provides direct evidence for the existence of charge ordering in Pr0.75Na0.25MnO3. We find the Mn3+ and Mn4+ cations form zigzag chains in a-c plane by analyzing the diffraction patterns. Combining with the magnetization measurements and the results of electron spin resonance, we confirm the antiferromagnetic phase and ferromagnetic component coexist in Pr0.75Na0.25MnO3 below 120 K.  相似文献   

3.
We report the magnetic and electrical transport properties of manganite Pr0.6Na0.4MnO3. At the temperature of 2 K, a field-induced steplike magnetization and resistivity transition are observed. The step transitions of magnetization and resistivity are shifted to higher fields as a result of field cooling, and transformed to a smooth broad one when the cooling field is higher than 20 kOe. Moreover, in a magnetic field slightly below the critical field, the magnetic and resistive relaxation exhibits a spontaneous step after a long incubation time when both the temperature and magnetic field are constant. Such steplike transitions are discussed in terms of a martensiticlike transformation associated with phase separation.  相似文献   

4.
Nd0.75Na0.25MnO3 polycrystalline ceramic is prepared via sol-gel process and its magnetic properties and electron spin resonance (ESR) spectra have been investigated experimentally. As the compound is cooled from room temperature, a charge-ordered state first develops below 170 K. A high magnetic field melts the charge ordered state and stabilizes a ferromagnetic (FM) state below 170 K. A field induced transition, analogous to a spin flip transition, is observed between 40 and 170 K. The critical temperature for spin flip increases with increasing temperature. Below 130 K, the compound tends to be intrinsically inhomogeneous, i.e. FM clusters and paramagnetic domains coexist in this system at least, which is confirmed by ESR measurements. When the external magnetic field is zero, long range FM interaction is not developed in this system; however, a tendency of re-entrant FM transition is observed in this compound.  相似文献   

5.
Polycrystalline manganites Pr0.8Na0.2MnO3 doped by ruthenium (0.0≤xRu≤0.2) were prepared by the sol-gel process. The magnetic field induced metamagnetism was observed to occur with a large resistivity drop at 3 K for xRu≤0.02 samples, which can be sorted into the kind of CMR phenomenon. It was found that the 0.01 Ru doping increased TC and decreased the metamagnetic critical field than that of the undoped sample. The doped manganites show a quick increase in their magnetic moments as xRu increases from 0.01 to 0.04, but the larger fraction of Ru doping (0.04≤xRu≤0.2) reduces their M and TC. All the five doped samples have larger magnetic moments than that of the host sample. Ru doping of xRu>0.01 results in a rapid disappearance for the observation of long range spin and charge ordering in the samples’ M-T curves, which is characteristic of the undoped sample. It was found that larger low-temperature MR favored decrease in the metamagnetic critical field. Finally, the phase diagram of Ru doping vs. transition temperatures is presented to summarize the experiments.  相似文献   

6.
The polycrystalline manganite La0.75Sr0.25MnO3 prepared by an alternative carbonate precipitation route reveals the rhombohedral perovskite structure. Magnetization isotherms measured up to 2 T are used to determine Curie temperature of 332 K by means of Arrott plot. Maximum of magnetic entropy change is found at Curie temperature. The relative cooling power equal to 64 J/kg for 1.5 T magnetic field, is superior as compared to the manganite with the same chemical composition from the sol-gel method.  相似文献   

7.
A detailed study of the low-temperature magnetic state and the relaxation in the phase-separated colossal magnetoresistance Nd2/3Ca1/3MnO3 perovskite has been carried out. Clear experimental evidence of the cluster-glass magnetic behavior of this compound has been revealed. Well defined maxima in the in-phase linear ac susceptibility χ′(T) were observed, indicative of the magnetic glass transition at Tg∼60 K. Strongly divergent zero-field-cooled and field-cooled static magnetizations and frequency dependent ac susceptibility are evident of the glassy-like magnetic state of the compound at low temperatures. The frequency dependence of the cusp temperature Tmax of the χ′(T) susceptibility was found to follow the critical slowing down mechanism. The Cole–Cole analysis of the dynamic susceptibility at low temperature has shown extremely broad distribution of relaxation times, indicating that spins are frozen at “macroscopic” time scale. Slow relaxation in the zero-field-cooled magnetization has been experimentally revealed. The obtained results do not agree with a canonical spin-glass state and indicate a cluster glass magnetic state of the compound below Tg, associated with its antiferromagnetic–ferromagnetic nano-phase segregated state. It was found that the relaxation mechanisms below the cluster glass freezing temperature Tg and above it are strongly different. Magnetic field up to about μ0H∼0.4 T suppresses the glassy magnetic state of the compound.  相似文献   

8.
The exchange bias phenomenon has been investigated in multiferroic Eu0.75Y0.25MnO3. The material shows a weak ferromagnetism with cone spin configuration induced by external magnetic field below 30 K. Consequently, the electric polarization coming from the cycloid spin order below 30 K can be suppressed by external magnetic fields. The magnetic hysteresis loops after cooling in a magnetic field exhibit characteristics of exchange bias below the spin glassy freezing temperature (Tg)∼16 K. The exchange bias field, coercivity field, and remanent magnetization increase with increasing cooling magnetic field. The exchange bias effect is ascribed to the frozen uncompensated spins at the antiferromagnetism/weak ferromagnetism interfaces in the spin-glass like phase.  相似文献   

9.
We have investigated the magnetic and transport properties of a polycrystalline Pr2Pt3Si5 sample through the dc and ac magnetic susceptibilities, electrical resistivity, and specific heat measurements. The Rietveld refinement of the powder X-ray diffraction data reveals that Pr2Pt3Si5 crystallizes in the U2Co3Si5-type orthorhombic structure (space group Ibam). Both the dc and ac magnetic susceptibility data measured at low fields exhibit sharp anomaly near 15 K. In contrast, the specific heat data exhibit only a broad anomaly implying no long range magnetic order down to 2 K. The broad Schottky-type anomaly in low temperature specific heat data is interpreted in terms of crystal electric field (CEF) effect, and a CEF-split singlet ground state is inferred. The absence of the long range order is attributed to the presence of nonmagnetic singlet ground state of the Pr3+ ion. The electrical resistivity data exhibit metallic behavior and are well described by the Bloch–Grüniesen–Mott relation.  相似文献   

10.
11.
钙钛矿La0.75Ca0.25-xSrxMnO3的磁卡效应与复合材料   总被引:6,自引:0,他引:6       下载免费PDF全文
沈亚涛  郭载兵  都有为 《物理学报》1999,48(11):2137-2141
采用固相反应烧结法制成了钙钛矿La0.75Ca0.25-xSrxMnO3多晶样品.研究了样品的微观结构、样品的磁熵变和居里温度与成分的变化关系.并通过复合得到一种可适用于Ericsson循环的制冷材料. 关键词:  相似文献   

12.
13.
We have studied by the electron-spin resonance (ESR) and static magnetic field techniques, the La2/3Ba1/3MnO3 perovskite, which was previously shown to exhibit a martensitic phase transformation in the vicinity of Ts∼200 K [Physical Review B 68, 054109 (2003)], leading to its structural phase-segregated state. Resonant absorptions reveal that in the temperature interval from 100 K to 340 K the compound represents a mixture of two ferromagnetic phases possessing different magnetizations, in varying proportions depending on the temperature, and a small amount of a paramagnetic phase. The results agree well with the previous neutron diffraction study. Applied in the ESR experiments, magnetic fields (2–6 kOe) strongly affect the magnetization curves: even magnetic field as high as 700 Oe modifies the anomaly in the phase transformation region and removes the difference between the zero-field cooled and field-cooled magnetization curves, which implies that the difference in the magnetic susceptibility of the coexisting phases is small and the magnetic domain configuration can be easily changed.  相似文献   

14.
We have thoroughly investigated the entire magnetic states of under-doped ferromagnetic-insulating manganite Nd0.8Sr0.2MnO3 through temperature-dependent linear and non-linear complex ac magnetic susceptibility measurements. This ferromagnetic-insulating manganite is found to have frequency-independent ferromagnetic to paramagnetic transition temperature at around 140 K. At around 90 K (≈T?) the sample shows a second frequency-dependent re-entrant magnetic transition as explored through complex ac susceptibility measurements. Non-linear ac susceptibility measurements (higher harmonics of ac susceptibility) have also been performed (with and without the superposition of a dc magnetic field) to further investigate the origin of this frequency dependence (dynamic behavior at this re-entrant magnetic transition). Divergence of 3rd harmonic of ac susceptibility in the limit of zero exciting field indicates a spin-glass-like freezing phenomena. However, large value of spin-relaxation time (τ0=10−8 s) and small value of coercivity (∼22 Oe) obtained at low temperature (below T?) from critical slowing down model and dc magnetic measurements, respectively, are in contrast with what generally observed in a canonical spin glass (τ0=10−12-10−14 s and very large value of coercivity below freezing temperature). We have attributed our observation to the formation of finite size ferromagnetic clusters which are formed as consequence of intrinsic phase separation and undergo cluster glass-like freezing below certain temperature in this under-doped manganite. The results are supported by the electronic- and magneto-transport data.  相似文献   

15.
Zero-field-cooled(ZFC) magnetization,field-cooled(FC) magnetization,ac magnetic susceptibility and major hysteresis loops of itinerant ferromagnet SrRuO3 have been measured at magnetic ordering temperatures ranging from 5 to 160K.An empirical model is proposed to calculate the measured ZFC magnetization.The result indicates that the calculated ZFC magnetization compares well with the measured one.Based on the generalized Preisach model.both the ZFC and FC curves are reproduced by numerical simulations.The critical temperature and critical exponents are determined by measuring the ac magnetic susceptibility in different bias magnetic fields at temperatures in the vicinity of the point of phase transition.  相似文献   

16.
用固相反应法制备了La0.67Sr0.08Na0.25MnO3样品.通过磁化强度-温度(M-T)曲线、电阻率-温度(ρ-T)曲线以及ρ-T拟合曲线研究了样品的输运性质及庞磁电阻(colossal magnetoresistance,CMR)效应.结果表明,ρ-T曲线和磁电阻-温度(MR-T)曲线均出现双峰现象;高温峰是伴随顺磁-铁磁(PM-FM)相变出现绝缘体-金属(I-M)相变,低温峰是颗粒界面效应;两个绝缘相输运机理不同:较低温度下(248K<T<274K),ρ(T)符合极化子的可变程跃迁模型,而在更高温区(330K<T<374K),ρ(T)符合极化子近邻跃迁模型;两个类金属相输运机理也不同:在低温区(67K<T<186K),满足ρ-T2.5关系,输运机理是自旋波散射和电-磁子散射作用,而在高温区(292K<T<304K),满足ρ-T2关系,输运机理是单磁子散射作用. 关键词: 庞磁电阻 金属-绝缘体转变 晶界效应 输运行为  相似文献   

17.
采用脉冲激光沉积法分别在(100)LaAlO3和(100)SrTiO3基片上生长了La0.33Pr0.34Ca0.33MnO3薄膜,并通过磁测量和电输运测量对生长在不同基片上的La0.33Pr0.34Ca0.33MnO3薄膜的物性进行了研究.结果表明,基片和薄膜之间的压应力导致La关键词: 钙钛矿锰氧化物 相分离 电荷有序  相似文献   

18.
采用固相烧结方法制备了Pr1-xCaxMnO3(x=0.3)钙态矿结构锰氧化物陶瓷样品,对其在磁场和电场下的直、交流输运性质做了系统研究.通过测量加磁场和零场下的Ⅰ-Ⅴ曲线,得到其居里温度为150K,与VSM测试结果一致.通过测量加磁场与零场下交流的阻抗频谱,发现加磁场后样品的晶界电阻明显减小,而晶粒电阻几乎保持不变,表明Pr1-xCaxMnO3陶瓷多晶样品的CMR效应源于样品的晶界.为确定晶界处的势垒高度,测量了样品在不同频率下的阻抗温谱,根据Arrhenius定律拟合得出势垒高度为117 meV,与用直流R-T数据拟合得出的激活能一致.  相似文献   

19.
We have performed magnetization measurements and electron spin resonance (ESR) on polycrystalline manganites of Nd0.5Sr0.5-xBaxMnO3 (x = 0.1). Phase separation and phase transitions are observed from the susceptibility and the ESR spectra data. Between 260 K (~ Tc) and 185 K (~ TN), the system coexists of the paramagnetic phase and the ferromagnetic (FM) phase. Between 185 K and 140 K, the system coexists of the FM phase and the antiferromagnetic (AFM) phase. These results indicate that the system has a very complex magnetic state due to the origin of the instability stemming from manganite Nd0.5Sr0.4Ba0.1MnO3 by partially substituting the larger Ba^2+ ions for the smaller Sr^2+ ions.  相似文献   

20.
The first-principles calculations are performed to investigate the mechanical properties and electronic structure of TiC, Ti0.75W0.25C, Ti0.75W0.25C0.75N0.25, TiC0.75N0.25 and TiN. Density functional theory and ultrasoft pseudopotentials are used in this study. From the formation energy, it is found that nitrogen can increase the stability of TiC. The calculated elastic constants and elastic moduli of TiC compare favorably with other theoretical and experimental values. Tungsten and nitrogen are observed to significantly increase the bulk, shear and Young's modulus of TiC. Through the analysis of B/G and Cauchy pressure, tungsten can significantly improve the ductility of TiC. The electronic structure of TiC, TiN, Ti0.75W0.25C, Ti0.75W0.25C0.75N0.25, and TiC0.75N0.25 are used to describe nonmetal–metal and metal–metal bonds. Based on the Mulliken overlap population analysis, the hardness values of TiC, Ti0.75W0.25C, Ti0.75W0.25C0.75N0.25, TiC0.75N0.25 and TiN are estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号