首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synthesis and the ability of TTF-hydrazone to act as a versatile precursor for the design of electroactive ligands are reported together with the chelating ability of these ligands through their M(CO)4 complexes, (M = Mo, W).  相似文献   

2.
Michel Guerro 《Tetrahedron》2009,65(31):6123-8746
A series of tetrathiafulvalene (TTF) derivatives functionalized by one or two β-diketonatoboron difluoride groups were synthesized through the addition of borontrifluoride to TTF substituted by one or two acetylacetone functions. The influence of the β-diketonatoboron difluoride moiety on the redox properties of the TTF has been investigated by cyclic voltammetry.  相似文献   

3.
The synthesis of two tetrathiafulvalene-appended pyridinehydrazone pyrimidine ligands, namely (Z)-4-(2-((5-([2,2′-bi(1,3-dithiolylidene)]-4-yl)pyridin-2-yl)methylene) hydrazinyl)-6-chloropyrimidine L1 and (Z)-4-(2-((6-([2,2′-bi(1,3-dithiolylidene)]-4-yl)pyridin-2-yl)methylene) hydrazinyl)-6-chloropyrimidine L2 is described. Ligand L1 was reacted with cobalt(II) to yield a cationic metal complex [Co(L1)2] while ligand L2 was reacted with zinc(II) to afford a neutral metal complex [ZnL2Cl2]. The crystal structure analysis of [Co(L1)2] indicate that Co(II) ion is coordinated by six nitrogen atoms from two perpendicular ligands while in [ZnL2Cl2], Zn(II) is coordinated by two chlorine atoms and three nitrogen atoms. The electrochemical behavior indicate that ligands L1 and L2 and the zinc(II) complex are suitable fort the preparation of crystalline radical cation salts. Finally the determination of MIC80 values against C. albicans, C. glabrata, C. parapsilosis, C. krusei and E. dermatitidis revealed that the cobalt(II) metal complex [Co(L1)2] is active against all the studied fungi.  相似文献   

4.
Michel Guerro 《Tetrahedron》2008,64(22):5285-5290
Two synthetic approaches towards a new bisthiopicoline substituted vinylogous tetrathiafulvalene (TTFV) are described. As evidenced by electrochemistry and 1H NMR studies, this redox active ligand shows excellent coordinating properties towards Zn2+ metal ion.  相似文献   

5.
Two Cu(I) complexes based on the thioethyl‐bridged triazol‐pyridine ligand with tetrathiafulvalene unit (TTF‐TzPy, L ), [Cu(I)(Binap)(L)]BF4 ( 5 , Binap=2,2’‐bis(diphenylphosphino)‐1,1’‐binaphthyl) and [Cu(I)(Xantphos)(L)]BF4 ( 6 , Xantphos=9,9‐dimethyl‐4,5‐bis(diphenylphosphino)‐xanthene), have been synthesized. All new compounds are characterized by elemental analyses, 1H NMR and mass spectroscopies. The complex 5 has been determined by X‐ray structure analyses which shows that the central copper (I) ion assumes distorted tetrahedral geometry. The photophysical, computational and electrochemical properties of L and 5 ‐ 6 have been investigated. The most representative molecular orbital energy‐level diagrams and the spin‐allowed singlet? singlet electronic transitions of the three compounds have been calculated with density functional theory (DFT) and time‐dependent DFT (TD‐DFT). The luminescence bands of Cu(I) complexes 5 ‐ 6 have been assigned as mixed intraligand and metal‐to‐ligand charge transfer 3(MLCT+π→π*) transitions through analysis of the photophysical properties and DFT calculations. The electrochemical studies reveal that 5 ‐ 6 undergo reversible TTF/TTF+?/TTF2+ redox processes and one irreversible Cu+→Cu2+ oxidation process.  相似文献   

6.
A new epoxy-tannin chelating resin was synthesized from epoxy resin and used for the preconcentration and separation of rare elements. The acidity, rate, reuse, capacity and interference on the adsorption of ions on the resin as well as the conditions of desorption of these ions from the resin were investigated by means of inductively coupled plasma atomic emission spectrometry (ICP-AES). The composition of the resin and mechanism of enrichment for some ions were discussed. The results show that the relative standard deviations for the determination of 50 ng ml−1 Ga(III), In(III), Bi(III) and Sn(IV), 10 ng ml−1 La(III), Y(III), Cr(III), Ti(IV) and V(V) and 1.0 ng ml−1 Be(II) were in the range of 0.5–4.5%. The contents of these elements in a sample solution from a smelter determined by the new method were in agreement with those values obtained by Zeeman atomic absorption spectrometry with an average error <3.4%.  相似文献   

7.
A family of N,N donor ligands [1-(NHAr)-2-(PR2NAr′)C6H4] (1a-d; Ar = 2,6-iPr2-C6H3, R = Me, Ph, Ar′ = 2,4,6-Me3-C6H2, 2-iPr-C6H4, 2,6-iPr2-C6H3) has been prepared and fully characterized by multinuclear NMR spectroscopy and X-ray crystallography. Lithiation of the N-H unit and subsequent salt metathesis protocols with ScCl3THF3 provides an avenue to organometallic scandium complexes. The resultant base-free monomeric dichlorides LScCl2, 3a-d, have been fully characterized by NMR spectroscopy as well as X-ray crystallography (3a,c,d). Alkylation of the dichlorides using LiMe results in clean formation of dialkyl complexes LScMe24a-c. Thermolysis of these materials under argon and hydrogen leads to decomposition products as a result of C-H activation of the ligand. Analysis of these results provides a qualitative assessment of the metalative resistance of each ligand framework.  相似文献   

8.
《Mendeleev Communications》2022,32(2):205-207
Ruthenium(ii) complexes with chelating N-heterocyclic carbene (NHC) ligands were studied in the arylation of phenyl group in 2-phenylpyridine and 1-phenylpyrazole with aryl chlorides in water. Complexes with NHC-ligands containing a hemilabile coordinating N-carboxylatomethyl group enable fast and selective ortho-CH-diarylation in the absence of carboxylate-assisting additives.  相似文献   

9.
Claudio A. Jiménez 《Tetrahedron》2005,61(16):3933-3938
Practical and efficient protocols to obtain highly hindered polyanionic chelating ligands based on bis-(3,5-di-tert-butyl-2-hydroxybenzamido) compounds are reported here. N-3,5-di-tert-Butylsalicyloyloxysuccinimide was treated with aliphatic diamines to form aliphatic hydrocarbon-linked bis-amides 4a-4g. Aromatic diamines required more powerful electrophile, thus the corresponding benzylated acid chloride was used to form aromatic hydrocarbon-linked bis-amides 8a-8d. The yields ranged from good to very good and showed that choosing the right acylating agent is a key point in this synthesis. All the compounds were characterized by elemental analysis, IR, MS and NMR.  相似文献   

10.
《Polyhedron》2000,19(28):2689-2695
The reaction of an ethanolic solution of copper(II) pyridinecarboxylates CuX2·nH2O (where X is nicotinate (nic) (n=0) or isonicotinate (isonic) (n=4)) with ethylenediamine (en) in a molar ratio of 1:2 lead to the isolation of solid tetragonally distorted octahedral complexes of the type [Cu(en)2(H2O)2]X2·nH2O (n=1 for nic; n=0 for isonic). The analogous reaction of CuX2·nH2O with diethylenetriamine (dien) in a molar ratio of 1:1 leads to the formation of square-pyramidal pentacoordinated complexes of the type [CuX(dien)(H2O)]X. On the other hand, the reaction of equimolar quantities of copper(II) nitrate and dien with nicotinate anions (equimolar quantities of pyridinecarboxylic acid and NaOH) in ethanolic solutions gives a solid monomeric complex [Cu(nic)(NO3)dien)(H2O)]·H2O in which the coordination polyhedron around the Cu(II) atom is a (4+1+1) distorted tetragonal bipyramid. Based on the molecular structure the electronic and IR spectra are discussed. Moreover, the results of the quantitative determination of antimicrobial activity of the isonic complexes [Cu(isonic)2(H2O)4], [Cu(en)2(H2O)2](isonic)2, [Cu(isonic)(dien)(H2O)](isonic), as well as isonicotinic acid, ethylenediamine and diethylenetriamine alone are discussed.  相似文献   

11.
Summary New complexes of ruthenium(II), ruthenium(III), osmium(III) and palladium(II) have been prepared with a neutral bidendate hydrazone ligand derived from antipyrine-4-carboxaldehyde and benzoylhydrazine. Ruthenium(III) complexes have also been synthesized from monobasic bidendate ligands prepared from benzaldehyde and benzoyl orp-substituted (Me, Cl) benzoyl hydrazine. The complexes were characterized by spectroscopic techniques and investigated by cyclic voltammetry. The efficient catalytic oxidation of alcohols and 3,5-di- t butyl catechol in the presence of N-methylmorpholine-N-oxide orm-chloroperbenzoic acid as co-oxidants is reported.
Komplexe einiger Platinmetalle mit Hydrazonliganden und ihre katalytischen oxidativen Eigenschaften
Zusammenfassung Neue Komplexe von Ru(II), Ru(III), Os(III) und Pd(II) mit einem aus Antipyrin-4-carbaldehyd und Benzoylhydrazin hergestellten neutralen bidentaten Hydrazonliganden wurden synthetisiert. Im Fall von Ru(III) wurden auch aus Benzaldehyd und verschiedenen Benzoylhydrazinen gewonnene monobasische bidentate Liganden eingesetzt. Die Komplexe wurden mittels spektroskopischer Methoden charakterisiert und mit Hilfe der cyclischen Voltammetrie untersucht. Es wird über die effiziente katalytische Oxidation von Alkoholen und 3,5-di- t Butyl-katechol in Gegenwart von N-Methyl-morpholin-N-oxid oderm-Chlorperbenzoesäure als Co-Oxidantien berichtet.
  相似文献   

12.
13.
The spontaneous formation of the heteroligated complex [PtCl(kappa(2)-Ph(2)PCH(2)CH(2)SMe)(Ph(2)PCH(2)CH(2)SPh)]Cl (8 a) by a novel ligand rearrangement process has been observed. By using the weak-link approach, the relative arrangement of the alkyl and aryl groups can be controlled by abstraction of chloride from 8 a to form the closed complex [Pt(kappa(2)-Ph(2)PCH(2)CH(2)SMe)(kappa(2)-Ph(2)PCH(2)CH(2)SPh)][BF(4)](2) (5) and reopening using halide ions to form semi-open complexes [PtX(kappa(2)-Ph(2)PCH(2)CH(2)SMe)(Ph(2)PCH(2)CH(2)SPh)]BF(4) (8 b; X=Cl(-)) and (8 c; X=I(-)). Analogous procedures using Ph(2)PCH(2)CH(2)SMe and 1,4-(Ph(2)PCH(2)CH(2)S)(2)C(6)H(4) lead to heteroligated bimetallic complexes 7 and 9, illustrating that this ligand rearrangement process can be used as a tool for the assembly of complementary metallosupramolecular structures.  相似文献   

14.
We report the use of triorganotin fragments R2L1-2Sn containing N,C,N and O,C,O-ligands L1-2(L1 = C6H3(Me2NCH2)2-2,6, L2 = C6H3(tBuOCH2)2-2,6) on stabilization of both thiol-form in R2L1-2Sn-2-SPy (2-SPy = pyridine-2-thiolate) and thione-form in R2L1-2Sn(mimt) (mimt = 1-methylimidazole-2-thiolate) of the polar groups. Treatment of ionic organotin compounds [Me2L1Sn]+[Cl] (1) and [Ph2L2Sn]+[OTf] (2) with appropriate sodium salts Na-2-SPy and Na(mimt) resulted in the isolation of Me2L1Sn-2-SPy (3), Ph2L2Sn-2-SPy (4), Me2L1Sn(mimt) (5), Ph2L2Sn(mimt) (6). While polar group 2-SPy exists in its thiol-tautomeric form in compounds 3 and 4, the second polar group (mimt) has been stabilized as the thione-tautomeric form by triorganotin fragments R2L1-2Sn in compounds 5 and 6. The products were characterized by 1H, 13C and 119Sn NMR and IR spectroscopy, ESI/MS, elemental analyses and structures of 3, 6 were determined by X-ray diffraction study. The reactivity of compound 4 containing non-coordinated nitrogen atom of 2-SPy polar group towards CuCl and AgNO3 is also reported. The reactions led to isolation of organotin compounds Ph2L2SnCl (7) and Ph2L2SnNO3 (8) as the result of polar group transfer. The mechanism of this reaction has been investigated and compounds Ph3Sn-2-SPy (9) and Ph2L2Sn-4-SPy (10) (4-SPy = pyridine-4-thiolate) have been prepared for this purpose.  相似文献   

15.
Dinuclear arene ruthenium complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene?=?C6H6; p iPrC6H4Me; C6Me6) and monomeric cyclopentadienyl complexes [(η5-Cp)Ru(PPh3)2Cl] (Cp?=?cyclopentadienyl) react with polypyridyl nitrogen ligands L1 (3-(pyridin-2-yl)-1H-1,2,4-triazole) and L2 (1,3-bis(di-2-pyridylaminomethyl)benzene) in methanol to afford cationic mononuclear compounds [(η6-arene)Ru(L1)Cl]+ (arene?=?C6H6, 1; p iPrC6H4Me, 2; C6Me6, 3), [(η6arene)Ru(L2)Cl]+ (arene?=?C6H6, 4; p iPrC6H4Me, 5; C6Me6, 6), [(η5-Cp)Ru(L1)(PPh3)]+ (7), and [(η5Cp)Ru(L2)(PPh3)]+ (8). All cationic mononuclear compounds were isolated as their hexafluorophosphate salts and characterized by elemental analyses, NMR, and IR spectroscopic methods and some representative complexes by UV-Vis spectroscopy. The solid state structures of two derivatives, [6]PF6 and [7]PF6, have been determined by the X-ray structure analysis.  相似文献   

16.
Two new dioxomolybdenum(VI) complexes, [MoO2L1(CH3OH)] (1) and [MoO2L2(H2O)] (2), where L1 and L2 are dianionic form of N′-(2-hydroxy-3-methoxybenzylidene)-4methoxybenzohydrazide and N′-(2-hydroxy-3methoxybenzylidene)-2-hydroxybenzohydrazide, respectively, have been synthesized and structurally characterized by spectroscopic methods and single-crystal X-ray determination. The complexes are mononuclear molybdenum(VI) compounds. Mo in each complex is octahedral. The difference in the substituent groups in the benzohydrazides leads to coordination of different solvent molecules. Crystals of the complexes are stabilized by hydrogen bonds. The complexes are effective catalysts for sulfoxidation.  相似文献   

17.
The process of catalyst discovery and development relying on combinatorial methods has suffered so far from the difficult access to structurally diverse and large libraries of ligands, in particular the structurally more complex class of bidentate ligands. A completely new approach to streamline the difficult ligand synthesis process is to use structurally less complex monodentate ligands that self-assemble in the coordination sphere of a metal center through noncovalent attractive ligand-ligand interactions to generate bidentate, chelating ligands. When complementary attractive ligand-ligand interactions are employed, it is even possible to generate libraries of defined chelate-ligand catalysts by simply mixing two different monomeric ligands. This Minireview summarizes the first approaches and results in this new field of combinatorial homogeneous catalysis.  相似文献   

18.
New tripodal gem-(bis-phosphonates) uranophiles were discovered by a screening method that allowed for the selection of ligands with strong uranyl-binding properties in a convenient microtiter-plate format. The method is based on competitive uranium binding by using Sulfochlorophenol S as chromogenic chelate. This dye compound was found to present high uranyl complexation properties and allowed to highlight ligands presenting association constants for UO(2+)(2) up to 10(18) at pH 7.4 and 10(20) at pH 9. A collection of 40 known ligands including polycarboxylate, hydroxamate, catecholate, hydroxypyridonate and hydroxyquinoline derivatives was tested. Also screened was a combinatorial library prepared from seven amine scaffolds and eight acrylates bearing diverse chelating moieties. Among these 96 tested candidates, a tripod derivative bearing gem-bis-phosphonates moieties was found to present the highest complexation properties over a wide range of pH and was further studied.  相似文献   

19.
The synthesis and characterisation of nonclassical ruthenium hydride complexes containing bidentate PP and tridentate PCP and PNP pincer-type ligands are described. The mononuclear and dinuclear ruthenium complexes presented have been synthesised in moderate to high yields by the direct hydrogenation route (one-pot synthesis) or in a two-step procedure. In both cases [Ru(cod)(metallyl)(2)] served as a readily available precursor. The influences of the coordination geometry and the ligand framework on the structure, binding, and chemical properties of the M--H(2) fragments were studied by X-ray crystal structure analysis, spectroscopic methods, and reactivity towards N(2), D(2), and deuterated solvents.  相似文献   

20.
Dioxomolybdenum(VI) complexes [MoO2(B1)H2O] (1), [MoO2(B2)EtOH] (2), [MoO2(B3)EtOH] (3) and [MoO2(B4)EtOH] (4) were synthesized using the Schiff base ligands H2B1(previously reported), H2B2, H2B3 and H2B4, respectively. These ligands were prepared by condensation of 1-(2-pyridyl) 5-methyl 3-pyrazole carbohydrazide with salicylaldehyde, o-hydroxy acetophenone, 5-bromo salicylaldehyde and 5-nitro salicylaldehyde respectively. Due to the presence of a substituted 1-(2-pyridyl) pyrazole unit, ligands H2B1, H2B2 and H2B3 exhibit fluorescent emissions, and the most intense emission was obtained for H2B3. H2B4 is incapable of showing fluorescence emission. As the ligands are capable of using different binding modes, according to the demands of the guest metal ions, their emission properties also change accordingly. The dioxomolybdenum(VI) complex of the ligand H2B1, i.e. complex 1, shows quenched emission compared to H2B1. Again when Cu2+, Co2+ or Ni2+ ions are added to a solution of 1, in each case a new complex of Cu2+ Co2+ or Ni2+ is formed in solution and further quenching was observed. However, with Zn2+ input to a solution of 1, fluorescence recovery was observed up to the level of the free ligand. The copper(II) complex of H2B1 (complex 5), produced by adding equivalent amount of Cu2+ salt to a solution of 1, was isolated and characterized. One of the dioxomolybdenum(VI) complexes, 3, when subjected to an oxo-transfer reaction with PPh3 produces complex [MoO(B3)CH3CN] (6). Complex 6 shows reduced fluorescence emissions compared to 3 in the solid phase. These observations open up the possibilities for these ligands to work as fluorescent signaling system with different metal ion inputs. All the complexes are characterized by elemental analyses, electronic spectra, IR, 1H NMR, magnetic measurements, EPR and by cyclic voltammetry. Complexes 1 and 5, as well as the ligands H2B2 and H2B3, have been crystallographically characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号