首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chai Y  Ding H  Zhang Z  Xian Y  Pan Z  Jin L 《Talanta》2006,68(3):610-615
A new photocatalytic system, nano-TiO2-Ce(SO4)2 coexisted system, which can be used to determine the low chemical oxygen demand (COD) is described. Nano-TiO2 powders is used as photocatalyst in this system. The measuring method is based on direct determination of the concentration change of Ce(IV) resulting from photocatalytic oxidation of organic compounds. The mechanism of the photocatalytic oxidation for COD determination was discussed and the optimum experimental conditions were investigated. Under the optimum conditions, a good calibration graph for COD values between 1.0 and 12 mg l−1 was obtained and the LOD value was achieved as low as 0.4 mg l−1. When determining the real samples, the results were in good agreement with those from the conventional methods.  相似文献   

2.
Zr(HSO4)4 as a solid acid was applied for the acetalization of carbonyl compounds, at room temperature, under solvent-free conditions with good to excellent yields. The low cost and availability of the reagents, versatile procedure and easy work-up make this method attractive for the organic synthesis of these compounds.  相似文献   

3.
A photocatalytic method for the determination of chemical oxygen demand (COD) using a nano-TiO2-K2Cr2O7 system is described. The measuring principle is based on direct determination of the change of Cr(III) concentration resulting from photocatalytic oxidation of organic compounds and simultaneous photocatalytic reduction of stoichiometrically involved K2Cr2O7 in the solution. The operation conditions were optimized. The determinative COD value using this method was calculated from the absorbance of Cr(III). The operational characteristics of this method were demonstrated by use of a standard glucose solution as substrate. This method was also applied to the determination of the COD of wastewater samples. The results were in good agreement with those from the conventional (i.e., dichromate) COD methods.  相似文献   

4.
5.
6.
7.
KF/Al2O3 acts as an efficient catalytic system for the synthesis of carboacyclic nucleosides via Michael addition of pyrimidine and purine nucleobases to α,β-unsaturated esters under solvent-free and microwave conditions. Using this method, the title compounds are produced in good to excellent yields and short reaction times.  相似文献   

8.
A copper catalytic system was established for the stereoselective hydrodefluorination of gem‐difluoroalkenes through C−F activation to synthesize various Z fluoroalkenes. H2O is used as the hydrogen source for the fluorine acceptor moiety. This mild catalytic system shows good‐functional group compatibility, accepting a range of carbonyls as precursors to the gem‐difluoroalkenes, including aliphatic, aromatic, and α,β‐unsaturated aldehydes and even ketones. It serves as a powerful synthetic method for the late‐stage modification of complex compounds.  相似文献   

9.
The ring-opening reaction of styrene oxide with various nitrogen, oxygen, and carbon nucleophiles catalyzed by MoO2(acac)2 was described. The corresponding ring-opening compounds with nearly 100% regioselectivities were obtained under mild conditions in moderate to good yields. MoO2(acac)2 is a highly efficient catalyst for the ring opening of styrene oxide. The reaction serves as a simple and efficient method for the synthesis of 1,2-bifunctional compounds.  相似文献   

10.
We developed a method to synthesize fluorinated 1,4-unsaturated dicarbonyl compounds via photoredox catalyzed radical addition process. Commercially available ethyl bromodifluoroacetate (BrCF2CO2Et) as fluoroalkyl source, the corresponding fluoro-containing dicarbonyl compounds could be obtained in moderate to good yields.  相似文献   

11.
A practical catalytic method to convert alkanes into the corresponding oxygen‐containing compounds with O2 under mild conditions using N‐hydroxyphthalimide (NHPI) in the presence or absence of a transition metal was developed. Thus, cyclohexane was successfully converted into adipic acid in good conversion and selectivity by a combined catalytic system consisting of NHPI and Mn(acac)2. Lower alkane such as isobutane was converted into t‐butyl alcohol (83%) under 10 atm of air by NHPI‐Co(OAc)2 system. Alkylbenzene such as toluene was oxidized to benzoic acid in high yield (81%) under normal temperature and pressure of dioxygen in the presence of a catalytic amount of NHPI and Co(OAc)2. ESR measurements showed that phthalimide‐N‐oxyl generated from NHPI under dioxygen atmosphere is a key species in this oxidation and functions as a radical catalyst.  相似文献   

12.
In this work, we report the novel successful preparation of the Keggin-type Cs(CTA)2PW12O40 (CTA = cetyltrimethylammonium cation) nanostructure by a microemulsion method. The microemulsion system included the cationic surfactant CTAB, 1-butanol as co-surfactant, isooctane as oil phase, and an aqueous solution containing CsNO3. The Cs(CTA)2PW12O40 nanostructure was formed by the addition of an aqueous solution of phosphotungstic acid to the microemulsion solution. Characterization of the resultant nanostructure was done using FT–IR spectroscopy, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray analysis, and CHN elemental analysis. The product was found to be a star-shaped nanostructure composed of some nanorods whose diameter and length are about 100 nm and 500 nm, respectively. The prepared nanostructure was used as a recoverable catalyst for the synthesis of quinoxaline derivatives by the condensation of 1,2-diamines with 1,2-dicarbonyl compounds, which afforded the products in good to high yields in short reaction times.  相似文献   

13.
(1) Background: Peptides are good candidates for anticancer drugs due to their natural existence in the body and lack of secondary effects. (KLAKLAK)2 is an antimicrobial peptide that also shows good anticancer properties. (2) Methods: The Solid Phase Peptide Synthesis (Fmoc-strategy) was used for the synthesis of target molecules, analogs of (KLAKLAK)2-NH2. The purity of all compounds was monitored by HPLC, and their structures were proven using mass spectrometry. Cytotoxicity and antiproliferative effects were studied using 3T3 NRU and MTT tests, respectively. For determination of antimicrobial activity, the disc-diffusion method was used. Hydrolytic stability at three pH values, which mimic the physiological pH in the body, was investigated by means of the HPLC technique. (3) Results: A good selective index against MCF-7 tumor cell lines, combined with good cytotoxicity and antiproliferative properties, was revealed for conjugates NphtG-(KLAKLAK)2-NH2 and Caf-(KLAKLAK)2-NH2. The same compounds showed very good antifungal properties and complete hydrolytic stability for 72 h. The compound Caf-(KLβ-AKLβ-AK)2-NH2 containing β-Ala in its structures exhibited good antimicrobial activity against Escherichia coli K12 407 and Bacillus subtilis 3562, in combination with very good antiproliferative and cytotoxic properties, as well as hydrolytic stability. (4) Conclusions: The obtained results reveal that all synthesized conjugates could be useful for medical practice as anticancer or antimicrobial agents.  相似文献   

14.
Halitosis with the main components of trace volatile sulfur compounds widely affects the quality of life. In this study, an adaptable active sampling system with two sample‐collection modes of direct injection and solid‐phase microextraction was developed for the rapid and precise determination of trace volatile sulfur compounds in human halitosis coupled with gas chromatography–flame photometric detection. The active sampling system was well designed and produced for efficiently sampling and precisely determining trace volatile targets in halitosis under the optimized sampling and detection conditions. The analytical method established was successfully applied for the determination of trace targets in halitosis. The limits of detection of H2S, CH3SH, and CH3SCH3 by direct injection were 0.0140–23.0 μg/L with good recoveries ranging from 82.2 to 118% and satisfactory relative standard deviations of 0.4–9.5% (n = 3), respectively. The limit of detections of CH3SH and CH3SCH3 by solid‐phase microextraction were 2.03 and 0.186 × 10?3 μg/L with good recoveries ranging from 98.3 to 108% and relative standard deviations of 5.9–9.0% (n = 3). Trace volatile targets in positive real samples could be actually found and quantified by combination of direct injection and solid‐phase microextraction. This method was reliable and efficient for the determination of trace volatile sulfur compounds in halitosis.  相似文献   

15.
Photocatalytic CO2 reduction is a most promising technique to capture CO2 and reduce it to non-fossil fuel and other valuable compounds. Today, we are facing serious environmental issues due to the usage of excessive amounts of non-renewable energy resources. In this aspect, photocatalytic CO2 reduction will provide us with energy-enriched compounds and help to keep our environment clean and healthy. For this purpose, various photocatalysts have been designed to obtain selective products and improve efficiency of the system. Semiconductor materials have received great attention and have showed good performances for CO2 reduction. Titanium dioxide has been widely explored as a photocatalyst for CO2 reduction among the semiconductors due to its suitable electronic/optical properties, availability at low cost, thermal stability, low toxicity, and high photoactivity. Inspired by natural photosynthesis, the artificial Z-scheme of photocatalyst is constructed to provide an easy method to enhance efficiency of CO2 reduction. This review covers literature in this field, particularly the studies about the photocatalytic system, TiO2 Z-scheme heterojunction composites, and use of transition metals for CO2 photoreduction. Lastly, challenges and opportunities are described to open a new era in engineering and attain good performances with semiconductor materials for photocatalytic CO2 reduction.  相似文献   

16.
Density functional theory method was used to study the heats of formation (HOFs), electronic structure, energetic properties, and pyrolysis mechanism of a series of trinitromethyl-substituted heterocycle (including triazole, tetrazole, furazan, tetrazine, and fused heterocycles) derivatives. It is found that the fused ring, tetrazine, and tetrazole are effective structural units for increasing the HOFs of the derivatives. The substitution of the combination of nitro and trinitromethyl is very useful for improving their HOFs. The calculated energetic properties indicate that the combination of the nitro and trinitromethyl is very helpful for improving their detonation properties and oxygen balances (OB). Most of the title compounds have a good OB over zero. The OB of six compounds are very high and over 22. An analysis of the bond dissociation energies for several relatively weak bonds suggests that the N–O bond in the ring is a trigger bond for BIII-1, CI-3, and CI-4, and the ring–NO2 and (NO2)2C–NO2 bond cleavage is likely to happen in thermal decomposition for the remaining compounds. Considering the detonation performance and thermal stability, seven compounds could be regarded as potential candidates for high-energy compounds. Four compounds may be used as the novel high-energy oxidizers.  相似文献   

17.
The solubility isotherm of the system La2O3—SeO2—H2O at 100°C was studied. The compounds of the three-component system were identified by the Schreinemakers method as well as by chemical and X-ray phase analyses. Simultaneous TG and DTA analyses of all compounds of the system were made by using a derivatograph. The mechanism of thermal decomposition was described.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
The H2O2/SOCl2 reagent system has been used as a new and efficient reagent for deprotection of thiocarbonyls to carbonyl compounds. The salient features of this protocol are short reaction times, good chemoselectivity, clean reaction profiles, and simple work-up that preclude the use of toxic solvents.  相似文献   

19.
Summary The solubility isotherm of the system Tb2O3-SeO2-H2O at 100° was studied. The compounds of the three-component system were identified by the Schreinemakers’ method as well as by chemical and X-ray phase analyses. Simultaneous TG and DTA analyses of all compounds of the system were made. The mechanism of thermal decomposition was described.  相似文献   

20.
A sensitive electrochemical method for square‐wave voltammetric detection of organophosphate (OP) compounds was developed based on zirconia (ZrO2) nanoparticles modified electrode. The electrode was fabricated using electrochemical deposition and characterized by scanning electron microscopy (SEM), which confirmed the successful formation of nanoparticles. Due to the strong affinity of ZrO2 with the phosphoric group, nitroaromatic OPs can strongly bind to the surface of ZrO2 nanoparticles (ZrO2NPs). Under optimized operational conditions, SWV was employed for Omethoate (a model of OP compounds) detection with 5 min absorption, which showed a wide detection range from 98.5 pmol·L?1 to 985 nmol·L?1, with a detection limit as low as 52.5 pmol·L?1. This electrochemical sensor has good selectivity, stability and reproducibility, and great potential in the detection of OP compounds in agriculture area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号