首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CO(J=26–63) produced by 355 nm photolysis of H2CO was observed by VUV laser-excited flourescence. The temporal behavior of CO(J=36) indicates that rotationally excited CO fills the role of the long-lived intermediate in formaldehyde photodissociation.  相似文献   

2.
Controlling the selectivity between H(2)+CO and H+HCO in the S(1)/S(0) nonadiabatic photodissociation of formaldehyde has been investigated using direct quantum dynamics. Simulations started from the S(1) transition state have suggested that a key feature for controlling the branching ratio of ground-state products is the size of the momentum given to the wavepacket along the transition vector. Our results show that letting the wavepacket fall down from the barrier to the conical intersection with no initial momentum leads to H(2)+CO, while extra momentum toward products favors the formation of H+HCO through the same conical intersection. Quantum dynamics results are interpreted in semiclassical terms with the aid of a Mulliken-like analysis of the final population distribution among both products and the reactant on each electronic state.  相似文献   

3.
The photodissociation dynamics of the triatomic (or pseudo‐triatomic) system in the nonadiabatic multiple electronic states is investigated by employing a time‐dependent quantum wave packet method, while the time propagation of the wave packet is carried out using the split‐operator scheme. As a numerical example, the photodissociation dynamics of CH3I in three electronic states 1Q1(A′), 1Q1(A″), and 3Q0+ is studied and CH3I is treated as a pseudotriatomic model. The absorption spectra and product vibrational state distributions are calculated and compared with previous theoretical work. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

4.
The detailed reaction dynamics of CH(3)I photodissociation at 304 nm were studied by using high-resolution long time-delayed core-sampling photofragment translation spectroscopy. The vibrational state distributions of the photofragment, i.e., CH(3), are directly resolved due to the high kinetic resolution of this experiment for the first time. CH(3) radicals produced from I((3)Q(0+)), I((1)Q(1) <--( 3)Q(0+)), and I((3)Q(1)) channels are populated in different vibrational state distributions. The I((3)Q(0+)) and I((3)Q(1)) channels show only progressions in the nu2'(a2") umbrella bending mode, and the I((1)Q(1) <-- (3)Q(0+)) channel shows both progression in the nu2' umbrella bending mode and a small amount of excitation in the nu1'(a1') C-H stretching mode. The photodissociation processes from the vibrational hot band of CH(3)I (upsilon3 = 1, upsilon3 = 2) were also detected, primarily because of the absorption probability from the vibrational excited states, i.e., hot bands are relatively enhanced. Photofragments from the hot bands of CH(3)I show a cold vibrational distribution compared to that from the vibrational ground state of CH(3)I. The I* quantum yield and the curve crossing possibility were also studied for the ground vibrational state of CH(3)I. The potential energy at the curve crossing point was calculated to be 32 790 cm(-1) by using the one-dimensional Landau-Zener model.  相似文献   

5.
6.
Full-dimensional, three-state, surface hopping calculations of the photodissociation dynamics of formaldehyde are reported on ab initio potential energy surfaces (PESs) for electronic states S(1), T(1), and S(0). This is the first such study initiated on S(1) with ab initio-calculated spin-orbit couplings among the three states. We employ previous PESs for S(0) and T(1), and a new PES for S(1), which we describe here, as well as new spin-orbit couplings. The time-dependent electronic state populations and the branching ratio of radical products produced from S(0) and T(1) states and that of total radical products and molecular products at three total energies are calculated. Details of the surface hopping dynamics are described, and a novel pathway for isomerization on T(1) via S(0) is reported. Final translational energy distributions of H + HCO products from S(0) and T(1) are also reported as well as the translational energy distribution and final rovibrational distributions of H(2) products from the molecular channel. The present results are compared to previous trajectory calculations initiated from the global minimum of S(0). The roaming pathway leading to low rotational distribution of CO and high vibrational population of H(2) is observed in the present calculations.  相似文献   

7.
The laser-induced photodissociation of formaldehyde in the wavelength range 309相似文献   

8.
Excitation of formaldehyde to the 2141 band of the S1 state leads to photodissociation with nuclear spin state conservation of the hydrogen. Dissociation of ortho-formaldehyde gives ortho-hydrogen as a product. Interconversion between ortho- and para-formaldehyde at 1 Torr occurs with a rate constant greater than 0.1 min?1.  相似文献   

9.
We present a direct current slice imaging study of tetrachloroethylene (C(2)Cl(4)) photodissociation, probing the resulting ground state Cl ((2)P(3/2)) and spin-orbit excited state Cl* ((2)P(1/2)) products. We report photofragment images, total translational energy distributions and the product branching ratio of Cl*/Cl following dissociation at 235 and 202 nm, obtained using a two-color reduced-Doppler dissociation/probe. Near 235 nm, the Cl translational energy distribution shows a peak at the limit of the available energy, indicating a direct dissociation through a σ*(C-Cl) ← π (C=C) transition, which is superimposed on a broader underlying distribution. The ground state Cl image and associated translational energy distribution at 202 nm is broad and peaked at lower energy, suggesting either internal conversion to the ground state or a lower excited state prior to dissociation. The Cl* images are similarly broad at both wavelengths. The branching ratio is presented as a function of recoil energy, but after integration shows a near-statistical average of Cl:Cl* as 70:30 at both wavelengths. All the images are largely isotropic, with anisotropy parameters (β) of 0.05 ± 0.03.  相似文献   

10.
A detailed study of the photoinduced molecular elimination pathway of formaldehyde on the ground state surface was carried out using high-resolution dc slice ion imaging. Detailed correlated H(2) rovibrational and CO rotational product quantum state distributions were measured by imaging spectroscopically selected CO velocity distributions following photodissociation at energies from approximately 1800 to approximately 4100 cm(-1) above the barrier to molecular elimination. Excitation to the 2(1)4(1), 2(1)4(3), 2(2)4(1), 2(2)4(3), and 2(3)4(1) bands of H(2)CO are reported here. The dependence of the product rovibrational distributions on excitation energy are discussed in light of a dynamical model which has been formulated to describe the strong product state correlations observed.  相似文献   

11.
The standard classical expression of the state-resolved photodissociation cross section is not consistent with an efficient Bohr quantization of product internal motions. A new and strictly equivalent expression not suffering from this drawback is proposed. This expression opens the way to more realistic classical simulations of direct polyatomic photodissociations in the quantum regime where only a few states are available to the products.  相似文献   

12.
The photodissociation of NO(3) has been studied using velocity map ion imaging. Measurements of the NO(2) + O channel reveal statistical branching ratios of the O((3)P(J)) fine-structure states, isotropic angular distributions, and low product translational energy consistent with barrierless dissociation along the ground state potential surface. There is clear evidence for two distinct pathways to the formation of NO + O(2) products. The dominant pathway (>70% yield) is characterized by vibrationally excited O(2)((3)Σ(g)(-), v = 5-10) and rotationally cold NO((2)Π), while the second pathway is characterized by O(2)((3)Σ(g)(-), v = 0-4) and rotationally hotter NO((2)Π) fragments. We speculate the first pathway has many similarities to the "roaming" dynamics recently implicated in several systems. The rotational angular momentum of the molecular fragments is positively correlated for this channel, suggesting geometric constraints in the dissociation. The second pathway results in almost exclusive formation of NO((2)Π, v = 0). Although product state correlations support dissociation via an as yet unidentified three-center transition state, theoretical confirmation is needed.  相似文献   

13.
Studies on various aromatic endoperoxides (POs) reveal a different photodynamic behavior despite similar excitation conditions and despite similar chromophore structures. Using picosecond laser pump-probe technique it was found that heterocoerdianthrone (HECD), dissolved in dichloromethane, is produced from photocycloreversion of its endoperoxide with a time constant of τ=40±10 ps. Since the lifetime of the photoreactive S3 state is less than 3 ps, a two-step mechanism is expected. Photocleavage of the endoperoxide of anthradichromene (ADCPO) happens in 55±15 ps, whereas the endoperoxides of dimethylhomöocoerdianthrone (HOCDPO) and dimethoxyhomöocoerdianthrone (DMHDPO) photodissociate much faster. For their photodissociation we can state an upper time limit of 5 ps. The results of polarization and solvent dependent experiments demonstrate that the observed rise of signal is directly correlated with the formation of the parent compound in the ground state. The dynamics of the photodissociation of HECPO does not depend on polarity or viscosity of solvent. Therefore, an oxciplex configuration or an intermediate zwitterion cannot be involved in the photocycloreversion of aromatic endoperoxides. The model of a biradical mechanism must be claimed instead.  相似文献   

14.
The potential energy surfaces of isomerization, dissociation, and elimination reactions for CH3CH2COCl in the S0 and S1 states have been mapped with the different ab initio calculations. Mechanistic photodissociation of CH3CH2COCl at 266 nm has been characterized through the computed potential energy surfaces, the optimized surface crossing structure, intrinsic reaction coordinate, and ab initio molecular dynamics calculations. Photoexcitation at 266 nm leads to the CH3CH2COCl molecules in the S1 state. From this state, the C-Cl bond cleavage proceeds in a time scale of picosecond in the gas phase. The barrier to the C-Cl bond cleavage on the S1 surface is significantly increased by effects of the matrix and the internal conversion to the ground state prevails in the condensed phase. The HCl eliminations as a result of internal conversion to the ground state become the dominant channel upon photodissociation of CH3CH2COCl in the argon matrix at 10 K.  相似文献   

15.
A wave packet simulation of the ultraviolet photolysis dynamics of Ar-HI(upsilon = 0) is reported. Cluster photodissociation is started from two different initial states, namely, the ground van der Waals (vdW) and the first excited vdW bending state, associated with the Ar-I-H and Ar-H-I isomeric forms of the system, respectively. Formation of Ar-I radical products is investigated over the energy range of the cluster absorption spectrum. It is found that the yield of bound Ar-I radical complexes is typically 90%-100% and 70%-80% for the initial states associated with the Ar-I-H and Ar-H-I isomers, respectively. This result is in agreement with the experimentally observed time-of-flight spectrum of the hydrogen fragment produced after Ar-HI photodissociation. The high Ar-I yield is explained mainly by the small amount of energy available for the radical that is converted into internal energy in the photofragmentation process, which enhances the Ar-I survival probability. Quantum interference effects manifest themselves in structures in the angular distribution of the hydrogen fragment, and in pronounced rainbow patterns in the rotational distributions of the Ar-I radical.  相似文献   

16.
Summary The time-dependent formulation for nuclear dynamics in molecules induced by electronic excitation in a radiation field is reviewed. The present discussion is especially aiming at extracting physical observables for photodissociation and highlighting the connection to the nuclear dynamics of the process. The total dissociation probability, the probability associated with the formation of a given chemical product, and the probability that this product shows up in a specified quantum state is considered. The results are given as a function of the form of the light pulse, and special attention is given to situations where the duration of the light pulse is very short or very long.  相似文献   

17.
Ultraviolet (UV) photodissociation dynamics of jet-cooled SH radical (in X 2pi(3/2), nu"=0-2) is studied in the photolysis wavelength region of 216-232 nm using high-n Rydberg atom time-of-flight technique. In this wavelength region, anisotropy beta parameter of the H-atom product is approximately -1, and spin-orbit branching fractions of the S(3P(J)) product are close to S(3P2):S(3P1):S(3P0)=0.51:0.36:0.13. The UV photolysis of SH is via a direct dissociation and is initiated on the repulsive 2sigma- potential-energy curve in the Franck-Condon region after the perpendicular transition 2sigma(-)-X 2pi. The S(3P(J)) product fine-structure state distribution approaches that in the sudden limit dissociation on the single repulsive 2sigma- state, but it is also affected by the nonadiabatic couplings among the repulsive 4sigma-, 2sigma-, and 4pi states, which redistribute the photodissociation flux from the initially excited 2sigma- state to the 4sigma- and 4pi states. The bond dissociation energy D0(S-H)=29,245+/-25 cm(-1) is obtained.  相似文献   

18.
Ultraviolet (UV) photodissociation dynamics of jet-cooled phenyl radicals (C(6)H(5) and C(6)D(5)) are studied in the photolysis wavelength region of 215-268 nm using high-n Rydberg atom time-of-flight and resonance enhanced multiphoton ionization techniques. The phenyl radicals are produced from 193-nm photolysis of chlorobenzene and bromobenzene precursors. The H-atom photofragment yield spectra have a broad peak centered around 235 nm and are in good agreement with the UV absorption spectra of phenyl. The H + C(6)H(4) product translational energy distributions, P(E(T))'s, peak near ~7 kcal/mol, and the fraction of average translational energy in the total excess energy, , is in the range of 0.20-0.35 from 215 to 268 nm. The H-atom product angular distribution is isotropic. The dissociation rates are in the range of 10(7)-10(8) s(-1) with internal energy from 30 to 46 kcal/mol above the threshold of the lowest energy channel H + o-C(6)H(4) (ortho-benzyne), comparable with the rates from the Rice-Ramsperger-Kassel-Marcus theory. The results from the fully deuterated phenyl radical are identical. The dissociation mechanism is consistent with production of H + o-C(6)H(4), as the main channel from unimolecular decomposition of the ground electronic state phenyl radical following internal conversion of the electronically excited state.  相似文献   

19.
Reaction dynamics and coherent nuclear motions in the photodissociation of diphenylcyclopropenone (DPCP) were studied in solution by time-resolved absorption spectroscopy. Subpicosecond transient absorption spectra were measured in the visible region with excitation at the second absorption band of DPCP. The obtained spectra showed a new short-lived band around 480 nm immediately after photoexcitation, which is assignable to the initially populated S(2) state of DPCP before the dissociation. The dissociation takes place from this excited state (the precursor of the reaction) with a time constant of 0.2 ps, and the excited state of diphenylacetylene (DPA) is generated as the reaction product. The transient absorption after the dissociation decayed with a time constant of 8 ps that is very close to the S(2)-state lifetime of DPA, but the spectrum of this 8-ps component was different from the S(2) absorption observed with direct photoexcitation of DPA. We conclude that the dissociation of DPCP generates the S(2) state of DPA that probably has a cis-bent structure. At later delay times (>30 ps), the transient absorption signals are very similar to those obtained by direct photoexcitation of DPA. This confirmed that the electronic relaxation from the S(2) state of the product DPA occurs in a similar manner to that of DPA itself, i.e., the internal conversion to the S(1) state and subsequent intersystem crossing to the T(1) state. In order to examine the coherent nuclear dynamics in this dissociation reaction, we carried out time-resolved absorption measurements for the 480-nm band with 70 fs resolution. It was found that an underdamped oscillatory modulation with a 0.1-ps period is superposed on the decay of the precursor absorption. This indicates that DPCP exhibits a coherent nuclear motion having a approximately 330-cm(-1) frequency in the dissociative excited state. Based on a comparison with the measured and calculated Raman spectra of ground-state DPCP, we discuss the assignment of the "330-cm(-1) vibration" and attribute it to a vibration involving the displacement of the CO group as well as the deformation of the Ph-C[Double Bond]C-Ph skeleton. We consider that this motion is closely related to the reaction coordinate of the photodissociation of DPCP.  相似文献   

20.
Ultraviolet (UV) photodissociation dynamics of jet-cooled benzyl radical via the 4(2)B(2) electronically excited state is studied in the photolysis wavelength region of 228 to 270 nm using high-n Rydberg atom time-of-flight (HRTOF) and resonance enhanced multiphoton ionization (REMPI) techniques. In this wavelength region, H-atom photofragment yield (PFY) spectra are obtained using ethylbenzene and benzyl chloride as the precursors of benzyl radical, and they have a broad peak centered around 254 nm and are in a good agreement with the previous UV absorption spectra of benzyl. The H + C(7)H(6) product translational energy distributions, P(E(T))s, are derived from the H-atom TOF spectra. The P(E(T)) distributions peak near 5.5 kcal mol(-1), and the fraction of average translational energy in the total excess energy, , is ~0.3. The P(E(T))s indicate the production of fulvenallene + H, which was suggested by recent theoretical studies. The H-atom product angular distribution is isotropic, with the anisotropy parameter β ≈ 0. The H/D product ratios from isotope labeling studies using C(6)H(5)CD(2) and C(6)D(5)CH(2) are reasonably close to the statistical H/D ratios, suggesting that the H/D atoms are scrambled in the photodissociation of benzyl. The dissociation mechanism is consistent with internal conversion of the electronically excited benzyl followed by unimolecular decomposition of the hot benzyl radical on the ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号