共查询到20条相似文献,搜索用时 10 毫秒
1.
Binary complexes containing hydrogen cyanide and hydrogen fluoride are formed in helium nanodroplets, and studied using high-resolution infrared laser spectroscopy. Rotationally resolved spectra are reported for the H-F and C-H stretches of the linear HCN-HF complex, a system that has been thoroughly studied in the gas phase. We report the high-resolution spectra of the higher energy, bent HF-HCN isomer, which is also formed in helium. Stark spectra are reported for both isomers, providing dipole moments of these complexes. The experimental results are compared with ab initio calculations, also reported here. Spectra are reported for several ternary complexes, including (HCN)2-HF, HCN-(HF)2, HF-(HCN)2, and HF-HCN-HF. 相似文献
2.
Infrared laser spectroscopy has been used to characterize imidazole (IM), imidazole dimer (IMD), and imidazole-water (IMW) binary systems formed in helium nanodroplets. The experimental results are compared with ab initio calculations reported here. Vibrational transition moment angles provide conclusive assignments for the various complexes studied here, including IM, one isomer of IMD, and two isomers of the IMW binary complexes. 相似文献
3.
Merritt JM Douberly GE Stiles PL Miller RE 《The journal of physical chemistry. A》2007,111(49):12304-12316
Prereactive metal atom-HCN entrance channel complexes [M-HCN (M=Al, Ga, In)] have been stabilized in helium nanodroplets. Rotationally resolved infrared spectra are reported for the CH stretching vibration of the linear nitrogen-bound HCN-Ga and HCN-In complexes that show significant perturbation due to spin-orbit coupling of the 2Pi1/2 ground state with the 2Sigma1/2 state which are degenerate at long range. Six unresolved bands are also observed and assigned to the linear hydrogen-bound isomers of Al-HCN, Ga-HCN, and In-HCN corresponding to the fundamental CH stretching vibration and a combination band involving the CH stretch plus intermolecular stretch for each isomer. A nitrogen-bound HCN-Al complex is not observed, which is attributed to reaction, even at 0.37 K. This conclusion is supported by the observation of a weakly bound complex containing two HCN's and one Al atom which, from the analysis of its rotationally resolved zero-field and Stark spectra is assigned to a weakly bound complex of a HCNAl reaction product and a second HCN molecule. Theoretical calculations are presented to elucidate the reaction mechanisms and energetics of these metal atom reactions with HCN. 相似文献
4.
Infrared laser spectroscopy is used to show that four structural isomers of the uracil-water binary complex are formed in helium nanodroplets. The assignment of the infrared spectra is aided by measurements of vibrational transition moment angles (VTMAs) for various vibrational modes of these complexes. The experimental results are in excellent agreement with ab initio calculations, which had previously predicated the existence of the same four isomers. The results suggest that the relative abundances of the various isomers formed in helium droplets have more to do with the widths of the valleys in the potential surface that funnel into a particular local minimum than on the associated energetics. 相似文献
5.
The CH3-HCN and CD3-HCN radical complexes have been formed in helium nanodroplets by sequential pickup of a CH3 (CD3) radical and a HCN molecule and have been studied by high-resolution infrared laser spectroscopy. The complexes have a hydrogen-bonded structure with C3v symmetry, as inferred from the analysis of their rotationally resolved nu = 1 <-- 0 H-CN vibrational bands. The A rotational constants of the complexes are found to change significantly upon vibrational excitation of the C-H stretch of HCN within the complex, DeltaA = A'-A" = -0.04 cm(-1) (for CH3-HCN), whereas the B rotational constants are found to be 2.9 times smaller than that predicted by theory. The reduction in B can be attributed to the effects of helium solvation, whereas the large DeltaA is found to be a sensitive probe of the vibrational averaging dynamics of such weakly bound systems. The complex has a permanent electric dipole moment of 3.1 +/- 0.2 D, as measured by Stark spectroscopy. A vibration-vibration resonance is observed to couple the excited C-H stretching vibration of HCN within the complex to the lower-frequency C-H stretches of the methyl radical. Deuteration of the methyl radical was used to detune these levels from resonance, increasing the lifetime of the complex by a factor of 2. Ab initio calculations for the energies and molecular parameters of the stationary points on the CN+CH4 --> HCN+CH3 potential-energy surface are also presented. 相似文献
6.
Groenewold GS Gianotto AK McIlwain ME Stipdonk MJ Kullman M Moore DT Polfer N Oomens J Infante I Visscher L Siboulet B Jong WA 《The journal of physical chemistry. A》2008,112(3):508-521
The Free-Electron Laser for Infrared Experiments (FELIX) was used to study the wavelength-resolved multiple photon photodissociation of discrete, gas-phase uranyl (UO22+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was hydroxide, methoxide, or acetate; S was water, ammonia, acetone, or acetonitrile; and n = 0-3. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands and are comparable to solution-phase values. This result was surprising because initial DFT calculations predicted values that were 30-40 cm(-1) higher, consistent with intuition but not with the data. Modification of the basis sets and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO2A]+ produced [UO2AS]+, which produced only very modest changes to the uranyl antisymmetric stretch frequency, and did not universally shift the frequency to lower values. DFT calculations for [UO2AS]+ were in accord with trends in the data and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared for [UO2AS]+ species having different solvent neutrals, values decreased with increasing neutral nucleophilicity. 相似文献
7.
Vibrational spectra are reported in the N-H stretching region for uracil and thymine monomers in helium nanodroplets. Each monomer shows only a single isomer, the global minimum, in agreement with previous experimental and theoretical studies. The assignment of the infrared vibrational bands in the spectra is aided by the measurement of the corresponding vibrational transition moment angles (VTMAs) and ab initio frequency calculations. The ambiguity in the VTMA assignment of the N3H band for the uracil monomer is explained by the presence of dimer bands, which are overlapped with the monomer band. 相似文献
8.
The rotationally resolved depletion spectrum of hypochlorous acid embedded in helium nanodroplets in the 2.8 μm region is reported. The narrow a-type lines are asymmetrically skewed in the direction of the band origin, and an analysis of their line shapes based on the chirped damped oscillator function introduced by van Staveren and Apkarian [J. Chem. Phys. 133, 054506 (2010).] yields a response time of the helium solvent of 1 ns. The b-type lines are much broader due to the greater number of droplet states available for relaxation of the excited rotational states. 相似文献
9.
High resolution IR spectra of aniline, styrene, and 1,1-diphenylethylene cations embedded in superfluid helium nanodroplets have been recorded in the 300-1700 cm(-1) range using a free-electron laser as radiation source. Comparison of the spectra with available gas phase data reveals that the helium environment induces no significant matrix shift nor leads to an observable line broadening of the resonances. In addition, the IR spectra have provided new and improved vibrational transition frequencies for the cations investigated, as well as for neutral aniline and styrene. Indications have been found that the ions desolvate from the droplets after excitation by a non-evaporative process in which they are ejected from the helium droplets. The kinetic energy of the ejected ions is found to be ion specific and to depend only weakly on the excitation energy. 相似文献
10.
Madeja F Havenith M Nauta K Miller RE Chocholousová J Hobza P 《The Journal of chemical physics》2004,120(22):10554-10560
The infrared spectrum of formic acid dimers in helium nanodroplets has been observed corresponding to excitation of the "free" OH and CH stretches. The experimental results are consistent with a polar acyclic structure for the dimer. The formation of this structure in helium, as opposed to the much more stable cyclic isomer with two O-H...O hydrogen bonds, is attributed to the unique growth conditions that exist in helium droplets, at a temperature of 0.37 K. Theoretical calculations are also reported to aid in the interpretation of the experimental results. At long range the intermolecular interaction between the two monomers is dominated by the dipole-dipole interaction, which favors the formation of a polar dimer. By following the minimum-energy path, the calculations predict the formation of an acyclic dimer having one O-H...O and one C-H...O contact. This structure corresponds to a local minimum on the potential energy surface and differs significantly from the structure observed in the gas phase. 相似文献
11.
Birer O Moreschini P Lehmann KK Scoles G 《The journal of physical chemistry. A》2007,111(31):7624-7630
We have recorded the S1 <-- S0 electronic spectra of Biphenylene and its Ar and O2 van der Waals complexes inside helium nanodroplets using beam depletion detection. In general, the spectrum is similar to the previously reported high-resolution REMPI spectrum. The zero phonon lines, however, are split similar to the previously reported tetracene case. The calculated potential energy surface predicts that helium atoms can simultaneously occupy all equivalent global minima positions. Therefore, it appears that the splitting cannot be explained either by different isomers or by tunneling. Furthermore, surprisingly the splitting is retained for the Ar van der Waals complexes (and possibly for the O2 complex as well). This case suggests that the current models of the origin of zero phonon line splitting and the helium solvation are incomplete. 相似文献
12.
Electronic spectra of the S1<--S0 transition of the 3,4,9,10-perylenetetracarboxylic-dianhydrid (PTCDA) monomer isolated in superfluid helium nanodroplets have been measured by means of laser-induced fluorescence. The 0(0)(0) transition appears at 20,988 cm(-1) as the dominant line. We obtain clearly resolved the vibrational structure of the molecule. A comparison to Raman spectra of PTCDA films on metallic substrates and PTCDA crystals as well as with calculated frequencies provides the identification of the different modes. The enhanced resolution in the low temperature helium environment and the obtained line positions provide new information about structural properties of perylene derivatives. 相似文献
13.
Infrared-infrared double resonance spectroscopy is used as a probe of the vibrational dynamics of cyanoacetylene in helium droplets. The nu1 C-H stretching vibration of cyanoacetylene is excited by an infrared laser and subsequent vibrational relaxation results in the evaporation of approximately 660 helium atoms from the droplet. A second probe laser is then used to excite the same C-H stretching vibration downstream of the pump, corresponding to a time delay of approximately 175 micros. The hole burned by the pump laser is narrower than the single resonance spectrum, owing to the fact that the latter is inhomogeneously broadened by the droplet size distribution. The line width of the hole is characteristic of another broadening source that depends strongly on droplet size. 相似文献
14.
Simon A Jones W Ortega JM Boissel P Lemaire J Maître P 《Journal of the American Chemical Society》2004,126(37):11666-11674
Infrared spectra in the mid-infrared region (800-1600 cm(-1)) of highly unsaturated Fe(+)-hydrocarbon complexes isolated in the gas phase are presented. These organometallic complexes were selectively prepared by ion-molecule reactions in a Fourier transform ion cycloton mass spectrometer (FTICR-MS). The infrared multiphoton dissociation (IRMPD) technique has been employed using the free electron laser facility CLIO (Orsay, France) to record the infrared spectra of the mass selected complexes. The experimental IRMPD spectra present the main features of the corresponding IR absorption spectra calculated ab initio. As predicted by these calculations, the experimental spectra of three selectively prepared isomers of Fe+(butene) present differences in the 800-1100 cm(-1) range. On the basis of the comparison with calculated IR spectra, the IRMPD spectrum of Fe(butadiene)(+) suggests that the ligand presents the s-trans isomeric form. This study further confirms the potentialities of IRMPD spectroscopy for the structural characterization of organometallic ionic highly reactive intermediates in the gas phase. In conjunction with soft ionization techniques such as electrospray, this opens the door to the gas-phase characterization of reactive intermediates associated with condensed phase catalysts. 相似文献
15.
Verkerk UH Zhao J Saminathan IS Lau JK Oomens J Hopkinson AC Siu KW 《Inorganic chemistry》2012,51(8):4707-4710
Collision-induced charge disproportionation limits the stability of triply charged metal ion complexes and has thus far prevented successful acquisition of their gas-phase IR spectra. This has curtailed our understanding of the structures of triply charged metal complexes in the gas phase and in biological environments. Herein we report the first gas-phase IR spectra of triply charged La(III) complexes with a derivative of tryptophan (N-acetyl tryptophan methyl ester), and an unusual dissociation product, a lanthanum amidate. These spectra are compared with those predicted using density functional theory. The best structures are those of the lowest energies that differ by details in the π-interaction between La(3+) and the indole rings. Other binding sites on the tryptophan derivative are the carbonyl oxygens. In the lanthanum amidate, La(3+) replaces an H(+) in the amide bond of the tryptophan derivative. 相似文献
16.
Birer O Moreschini P Lehmann KK Scoles G 《The journal of physical chemistry. A》2007,111(49):12200-12209
We have recorded the electronic spectra of three polycyclic aromatic hydrocarbons (acenaphtylene, fluoranthene, and benzo(k)fluoranthene) containing a five-member ring and their van der Waals complexes with argon and oxygen with a molecular beam superfluid helium nanodroplet spectrometer. Although the molecules, which differ by addition of one or two fused benzene rings to acenaphtylene, have the same point group symmetry, the spectral lineshapes show distinct differences in the number of zero phonon lines and shapes of the phonon wings. Whereas the smallest molecule (acenaphtylene) has the most complicated line shape, the largest molecule (benzo(k)fluoranthene) shows different lineshapes for different vibronic transitions. The van der Waals complexes of fluoranthene exhibit more peaks than the theoretically allowed number of isomeric complexes with argon/oxygen. The current models of molecular solvation in liquid helium do not adequately explain these discrepancies. 相似文献
17.
We report the infrared depletion spectrum of para- and ortho-hydrogen peroxide embedded in superfluid helium nanodroplets in the OH stretching region. Six transitions were observed in the antisymmetric stretching band (v(5)) of H(2)O(2), and three in the weaker symmetric stretching band (v(1)). While rotations about the b- and c-axes are slowed by a factor of ~0.4 relative to the gas phase, rotations about the a-axis are not significantly affected; this relates to the rotational speed about the a-axis being too fast for helium density to adiabatically follow. The trans tunneling splitting does not appear to be considerably affected by the helium droplet environment, and is reduced by only 6% relative to the gas phase, under the assumption that the vibrational shifts of the v(5) and v(1) torsional subbands are the same. The linewidths increase with increasing rotorsional energies, and are significantly narrower for energies which fall within the "phonon gap" of superfluid helium. These narrower lines are asymmetrically broadened, indicative of a dynamical coupling between the H(2)O(2) rotor and surrounding helium density. 相似文献
18.
Giese C Stienkemeier F Mudrich M Hauser AW Ernst WE 《Physical chemistry chemical physics : PCCP》2011,13(42):18769-18780
Homo- and heteronuclear alkali quartet trimers of type K(3-n)Rb(n) (n = 0,1,2,3) formed on helium nanodroplets are probed by one-color femtosecond (fs) photoionization (PI) spectroscopy. The obtained frequencies are assigned to vibrations in different electronic states in comparison to high level ab initio calculations of the involved potentials including pronounced Jahn-Teller and spin-orbit couplings. Despite the fact that the resulting complex vibronic structure of the heavy alkali molecules complicates the comparison of experiment and theory we find good agreement for many of the observed lines for all species. 相似文献
19.
Dain RP Gresham G Groenewold GS Steill JD Oomens J van Stipdonk MJ 《Rapid communications in mass spectrometry : RCM》2011,25(13):1837-1846
Ion trap tandem mass spectrometry with collision‐induced dissociation, and the combination of infrared multiple‐photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations, were used to characterize singly charged, 1:1 complexes of Ca2+, Sr2+ and Ba2+ with salicylate. For each metal‐salicylate complex, the CID pathways are: (a) elimination of CO2 and (b) formation of [MOH]+ where M = Ca2+, Sr2+ or Ba2+. DFT calculations predict three minima for the cation‐salicylate complexes which differ in the mode of metal binding. In the first, the metal ion is coordinated by O atoms of the (neutral) phenol and carboxylate groups of salicylate. In the second, the cation is coordinated by phenoxide and (neutral) carboxylic acid groups. The third mode involves coordination by the carboxylate group alone. The infrared spectrum for the metal‐salicylate complexes contains a number of absorptions between 1000 and 1650 cm–1, and the best correlation between theoretical and experimental spectra is found for the structure that features coordination of the metal ion by phenoxide and the carbonyl O of the carboxylic acid group, consistent with the calculated energies for the respective species. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
20.
Forbes MW Bush MF Polfer NC Oomens J Dunbar RC Williams ER Jockusch RA 《The journal of physical chemistry. A》2007,111(46):11759-11770
The structures of cationized arginine complexes [Arg + M]+, (M = H, Li, Na, K, Rb, Cs, and Ag) and protonated arginine methyl ester [ArgOMe + H]+ have been investigated in the gas phase using calculations and infrared multiple-photon dissociation spectroscopy between 800 and 1900 cm-1 in a Fourier transform ion cyclotron resonance mass spectrometer. The structure of arginine in these complexes depends on the identity of the cation, adopting either a zwitterionic form (in salt-bridge complexes) or a non-zwitterionic form (in charge-solvated complexes). A diagnostic band above 1700 cm-1, assigned to the carbonyl stretch, is observed for [ArgOMe + H]+ and [Arg + M]+, (M = H, Li, and Ag), clearly indicating that Arg in these complexes is non-zwitterionic. In contrast, for the larger alkali-metal cations (K+, Rb+, and Cs+) the measured IR-action spectra indicate that arginine is a zwitterion in these complexes. The measured spectrum for [Arg + Na]+ indicates that it exists predominantly as a salt bridge with zwitterionic Arg; however, a small contribution from a second conformer (most likely a charge-solvated conformer) is also observed. While the silver cation lies between Li+ and Na+ in metal-ligand bond distance, it binds as strongly or even more strongly to oxygen-containing and nitrogen-containing ligands than the smaller Li+. The measured IR-action spectrum of [Arg + Ag]+ clearly indicates only the existence of non-zwitterionic Arg, demonstrating the importance of binding energy in conformational selection. The conformational landscapes of the Arg-cation species have been extensively investigated using a combination of conformational searching and electronic structure theory calculations [MP2/6-311++G(2d,2p)//B3LYP/6-31+G(d,p)]. Computed conformations indicate that Ag+ is di-coordinated to Arg, with the Ag+ chelated by both the N-terminal nitrogen and Neta of the side chain but lacks the strong M+-carbonyl oxygen interaction that is present in the tri-coordinate Li+ and Na+ charge-solvation complexes. Experiment and theory show good agreement; for each ion species investigated, the global-minimum conformer provides a very good match to the measured IR-action spectrum. 相似文献