首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular dynamics simulations of metastable ice VII and cubic ice Ic are carried out in order to examine (1) the ability of commonly used water interaction potentials to reproduce the properties of ices, and (2) the possibility of generating low-density amorphous (LDA) structures by heating ice VII, which is known to transform to LDA at approximately 135 K at normal pressure [S. Klotz, J. M. Besson, G. Hamel, R. J. Nelmes, J. S. Loveday, and W. G. Marshall, Nature (London) 398, 681 (1999)]. We test four simple empirical interaction potentials of water: TIP4P [W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983)], SPC/E [H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. B 91, 6269 (1987)], TIP5P [M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)], and ST2 [F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974)]. We have found that TIP5P ice VII melts at 210 K, TIP4P at 90 K, and SPC/E at 70 K. Only TIP5P water after transition has a structure similar to that of LDA. TIP4P and SPC/E have almost identical structures, dissimilar to any known water or amorphous phases, but upon heating both slowly evolve towards LDA-like structure. ST2 ice VII is remarkably stable up to 430 K. TIP4P and SPC/E predict correctly the cubic ice collapse into a high-density amorphous ice (HDA) at approximately 1 GPa whereas TIP5P remains stable up to approximately 5 GPa. The densities of the simulated ice phases differ significantly, depending on the potential used, and are generally higher than experimental values. The importance of proper treatment of long-range electrostatic interactions is also discussed.  相似文献   

2.
In situ high-pressure/low-temperature synchrotron x-ray diffraction and optical Raman spectroscopy were used to examine the structural properties, equation of state, and vibrational dynamics of ice VIII. The x-ray measurements show that the pressure-volume relations remain smooth up to 23 GPa at 80 K. Although there is no evidence for structural changes to at least 14 GPa, the unit-cell axial ratio ca undergoes changes at 10-14 GPa. Raman measurements carried out at 80 K show that the nu(Tz)A(1g)+nuT(x,y)E(g) lattice modes for the Raman spectra of ice VIII in the lower-frequency regions (50-800 cm(-1)) disappear at around 10 GPa, and then a new peak of approximately 150 cm(-1) appears at 14 GPa. The combined data provide evidence for a transition beginning near 10 GPa. The results are consistent with recent synchrotron far-IR measurements and theoretical calculations. The decompressed phase recovered at ambient pressure transforms to low-density amorphous ice when heated to approximately 125 K.  相似文献   

3.
We report a study of aqueous solutions of poly(vinylalcohol) and its hydrogel by thermal conductivity, κ, and specific heat measurements. In particular, we investigate (i) the changes in the solution and the hydrogel at 0.1 MPa observed in the 350-90 K range and of the frozen hydrogel at 130 K observed in the range from 0.1 MPa to 1.3 GPa, and (ii) the nature of the pressure collapse of ice in the frozen hydrogel and kinetic unfreezing on heating of its high density water at 1 GPa. The water component of the polymer solution on cooling either first phase separates and then freezes to hexagonal ice or freezes without phase separation and the dispersed polymer chains freeze-concentrate in nanoscopic and microscopic regions of the grain boundaries and grain junctions of the ice crystals in the frozen state of water in the hydrogel. The change in κ with temperature at 1 bar is reversible with some hysteresis, but not reversible with pressure after compression to 0.8 GPa at 130 K. At high pressures the crystallized state collapses showing features of κ and specific heat characteristic of formation of high density amorphous solid water. The pressure of structural collapse is 0.08 GPa higher than that of ice at 130 K. The slowly formed collapsed state shows kinetic unfreezing or glass-liquid transition temperature at 140 K for a time scale of 1 s. Comparison with the change in the properties observed for ice shows that κ decreases when the polymer is added.  相似文献   

4.
On pressurizing at temperatures near 130 K, hexagonal and cubic ices transform implosively at 0.8-1 GPa. The phase produced on transformation has the lowest thermal conductivity among the known crystalline ices and its value decreases on increase in temperature. An ice phase of similar thermal conductivity is produced also when high-density amorphous ice kept at 1 GPa transforms on slow heating when the temperature reaches approximately 155 K. These unusual formation conditions, the density and its distinguished thermal conductivity, all indicate that a distinct crystal phase of ice has been produced.  相似文献   

5.
The structure of amorphous ice under pressure has been studied by molecular dynamics at 160 K. The starting low-density phase undergoes significant changes as the density increases, and at rho=1.51 g/cm(3) our calculated g(OO)(r) is in excellent agreement with in situ neutron diffraction data obtained at 1.8 GPa and 100 K on very high density amorphous ice made at 150 K. As the system is further compressed, in the theoretical simulations, up to rho=1.90 g/cm(3), the structural modifications are continuous up to the highest density. The analysis of orientational distributions reveals that dense amorphous ice is characterized by major distortions of the tetrahedral geometry, and that the pressure structural changes, already observed experimentally at lower densities, can be interpreted as a trend towards a disordered closed-packed structure.  相似文献   

6.
The exact nature of the relationship between high-density (HDA) and very-high-density (VHDA) amorphous ice is unknown at present. Here we review the relation between HDA and VHDA, concentrating on experimental aspects and discuss these with respect to the relation between low-density amorphous ice (LDA) and HDA. On compressing LDA at 125 K up to 1.5 GPa, two distinct density steps are observable in the pressure-density curves which correspond to the LDA --> HDA and HDA --> VHDA conversion. This stepwise formation process LDA --> HDA --> VHDA at 125 K is the first unambiguous observation of a stepwise amorphous-amorphous-amorphous transformation sequence. Density values of amorphous ice obtained in situ between 0.3 and 1.9 GPa on isobaric heating up to the temperatures of crystallization show a pronounced change of slope at ca. 0.8 GPa which could indicate formation of a distinct phase. We infer that the relation between HDA and VHDA is very similar to that between LDA and HDA except for a higher activation barrier between the former. We further discuss the two options of thermodynamic phase transition versus kinetic densification for the HDA --> VHDA conversion.  相似文献   

7.
Isothermal compression experiments on water have been performed between 0 to 80 degrees C and up to 1.3 GPa pressure. The compressibilities derived from the water compression experiments reveal a nonsmooth PVT behavior forming two anomaly boundaries. These boundaries originate at the melting line of ice III at about 0.25 GPa/-20 degrees C, and of ice VI at about 0.8 GPa/13 degrees C. Both boundaries have a positive sloped course separating three areas of different PVT properties of water. However, this P-T topology is obscured by an unresolved complication in the temperature range of 40-60 degrees C, which allows different topological interpretations of the data. As a cross-check for the compression experiment the dehydration boundary of sodium chloride-dihydrate (NaCl.2H2O) has been determined up to 1.5 GPa. The dehydration curve of NaCl.2H2O which traverses the two anomaly boundaries shows two inflections at the intersection, at 0.27 GPa/12 degrees C and at 0.77 GPa/22 degrees C, respectively. While the isothermal compressibility curves as well as the dP/dT course of the two anomaly boundaries give evidence of two densifications of water, the slope analysis of the inflections of the NaCl-2H2O dehydration curve suggests that the entropy change plays an important role. A recent model of water at high pressure conditions proposes a gradual structural transition from a low density water (LDW) at low pressures to a high density water (HDW) at high pressures. The compression data as well as the inflections of the dehydration boundary indicate, however, two discrete structural changes of water. Data comparison with that model suggests that the anomaly boundary at lower pressure corresponds to a volume fraction [V(HDW)/(V(LDW)+V(HDW))] of 0.8, while the upper one approaches a volume fraction of 1.  相似文献   

8.
The changes in in situ Raman spectra of ice in aqueous KCl solution have been measured as a function of pressure at liquid nitrogen temperature (77 K). The ice that is formed abruptly transforms to a crystalline phase at 800 MPa. It has a spectrum close to that of ice VII′ to which high density amorphous (hda) ice transforms at about 4 GPa. This behavior contrasts with that of the ice in aqueous LiCl solution, which transforms to an amorphous phase at 500 MPa, as in the case of pressure-induced amorphization of ice Ih to hda.  相似文献   

9.
Transformations of water's high density amorph (HDA) to low density amorph (LDA) and of LDA's to cubic ice (Ic) have been studied by in situ thermal conductivity kappa measurements at high pressures. The HDA to LDA transformation is unobservable at p of 0.07 GPa, indicating that, for a fixed heating rate, an increase in pressure increases the temperature of HDA to LDA transformation and decreases that of LDA to ice Ic, causing thereby the two transformations to merge, and HDA appears to convert directly to ice Ic. Thus either LDA forms but converts extremely rapidly to ice Ic, or LDA does not form. At a fixed p and T, in the range of pressure amorphization of hexagonal ice, kappa continues to decrease with time. Therefore, the amorphization of ice Ih is kinetically controlled. When HDA at 1 GPa was heated from 130 to 157 K and densified to very HDA, its kappa increased by 3%. Our findings and a scrutiny of earlier reports show that a reversible transition between HDA and LDA does not occur at approximately 135 K and approximately 0.2 GPa. Since there is no unique HDA, it is difficult to justify the conjecture for a second critical point for water.  相似文献   

10.
We have made high density amorphous ice (HDA) by the pressure-induced amorphization of hexagonal ice at 77 K and measured the volume change on isobaric heating in a pressure range between 0.1 and 1.5 GPa. The volume of HDA on heating below ~0.35?GPa increases, while the volume of HDA on heating above ~0.35?GPa decreases. The polarized OH-stretching Raman spectra of the relaxed HDAs are compared with that of the unannealed HDA. The relaxed HDAs are prepared at 0.2 GPa at 130 K and 1.5 GPa at 160 K. It is found that the relatively strong totally symmetric OH-stretching vibration mode around 3100?cm(-1) exists in the depolarized reduced Raman spectrum χ(VH)(") of the unannealed HDA and that its intensity rapidly decreases by relaxation. The χ(VH)(") profiles of the relaxed HDA are similar to those of liquid water. These results indicate that the HDA reaches a nearly equilibrium state by annealing and the intrinsic state of HDA relates to a liquid state. The pressure-volume curve of the relaxed HDA at 140 K seems to be smooth in the pressure range below 1.5 GPa.  相似文献   

11.
Multiplicity of the liquid-liquid phase transitions in supercooled water, first obtained in computer simulations [Brovchenko et al., J. Chem. Phys. 118, 9473 (2003)], has got strong support from the recent experimental observation of the two phase transitions between amorphous ices [Loerting et al., Phys. Rev. Lett. 96, 025702 (2006)]. These experimental results allow assignment of the four amorphous water phases (I-IV) obtained in simulations to the three kinds of amorphous ices. Water phase I (rho approximately 0.90 gcm(3)) corresponds to the low-density amorphous ice, phase III (rho approximately 1.10 gcm(3)) to the high-density amorphous ice, and phase IV (rho approximately 1.20 gcm(3)) to the very-high-density amorphous ice. Phase II of model water with density rho approximately 1.00 gcm(3) corresponds to the normal-density water. Such assignment is confirmed by the comparison of the structural functions of the amorphous phases of model water and real water. In phases I and II the first and second coordination shells are clearly divided. Phase I consists mainly of the four coordinated tetrahedrally ordered water molecules. Phase II is enriched with molecules, which have tetrahedrally ordered four nearest neighbors and up six molecules in the first coordination shell. Majority of the molecules in phase III still have tetrahedrally ordered four nearest neighbors. Transition from phase III to phase IV is characterized by a noticeable drop of tetrahedral order, and phase IV consists mainly of molecules with highly isotropic angular distribution of the nearest neighbors. Relation between the structures of amorphous water phases, crystalline ices, and liquid water is discussed.  相似文献   

12.
High pressure and low temperature experiments with CO(2) hydrate were performed using diamond anvil cells and a helium-refrigeration cryostat in the pressure and temperature range of 0.2-3.0 GPa and 280-80 K, respectively. In situ x-ray diffractometry revealed that the phase boundary between CO(2) hydrate and water+CO(2) extended below the 280 K reported previously, toward a higher pressure and low temperature region. The results also showed the existence of a new high pressure phase above approximately 0.6 GPa and below 1.0 GPa at which the hydrate decomposed to dry ice and ice VI. In addition, in the lower temperature region of structure I, a small and abrupt lattice expansion was observed at approximately 210 K with decreasing temperature under fixed pressures. The expansion was accompanied by a release of water content from the sI structure as ice Ih, which indicates an increased cage occupancy. A similar lattice expansion was also described in another clathrate, SiO(2) clathrate, under high pressure. Such expansion with increasing cage occupancy might be a common manner to stabilize the clathrate structures under high pressure and low temperature.  相似文献   

13.
A method of free energy calculation is proposed, which enables to cover a wide range of pressure and temperature. The free energies of proton-disordered hexagonal ice (ice Ih) and liquid water are calculated for the TIP4P [J. Chem. Phys. 79, 926 (1983)] model and the TIP5P [J. Chem. Phys. 112, 8910 (2000)] model. From the calculated free energy curves, we determine the melting point of the proton-disordered hexagonal ice at 0.1 MPa (atmospheric pressure), 50 MPa, 100 MPa, and 200 MPa. The melting temperatures at atmospheric pressure for the TIP4P ice and the TIP5P ice are found to be about T(m)=229 K and T(m)=268 K, respectively. The melting temperatures decrease as the pressure is increased, a feature consistent with the pressure dependence of the melting point for realistic proton-disordered hexagonal ice. We also calculate the thermal expansivity of the model ices. Negative thermal expansivity is observed at the low temperature region for the TIP4P ice, but not for the TIP5P ice at the ambient pressure.  相似文献   

14.
An understanding of water's anomalies is closely linked to an understanding of the phase diagram of water's metastable noncrystalline states. Despite the considerable effort, such an understanding has remained elusive and many puzzles regarding phase transitions in supercooled liquid water and their possible amorphous proxies at low temperatures remain. Here, decompression of very high density amorphous ice (VHDA) from 1.1 to 0.02 GPa at 140 K is studied by means of dilatometry and powder x-ray diffraction of quench-recovered states. It is shown that the three amorphous states of ice are reversibly connected to each other, i.e., LDA<-->e-HDA<-->VHDA. However, while the downstroke VHDA-->e-HDA transition takes place in the pressure range of 0.06 GPaLDA transition takes place quasi-discontinuously at p approximately 0.06 GPa. That is, two amorphous-amorphous transitions of a distinct nature are observed for the first time in a one-component system-a first-order-like transition (e-HDA-->LDA) and a transition which is not first-order like but possibly of higher order (VHDA-->e-HDA). VHDA and e-HDA are established as the most stable and limiting states in the course of the transition. We interpret this as evidence disfavoring the hypothesis of multiple first-order liquid-liquid transitions (and the option of a third critical point), but favoring a single first-order liquid-liquid transition (and the option of a second critical point).  相似文献   

15.
A complete structural, calorimetric, and magnetic characterisation of the 2D coordination spin crossover polymer [Fe(pmd)(2)[Cu(CN)(2)](2)] is reported. The crystal structure has been investigated below room temperature at 180 K and 90 K, and at 30 K after irradiating the sample at low temperature with green light (lambda = 532 nm). The volume cell contraction through the thermal spin transition is only 18 A(3) which is lower than the usually observed value of around 25-30 A(3) while the average Fe-N bond distances decrease by the typical value of about 0.19 A. The structural data of the irradiated state indicate that the high spin state is well induced since the cell parameters are consistent with the data at 180 K. Calorimetric and photo-calorimetric experiments have also been performed. The entropy content for the thermal spin transition, DeltaS = 35-37 J mol(-1) K(-1) lies in the lowest range of the typical values and correlates with the low volume cell contraction. The combination of the crystallographic and calorimetric data predicts, in accordance with a mean-field approach, a linear pressure dependence of the critical temperature with a slope of 302 K GPa(-1). Magnetic measurements under pressure reveal an anomalous behaviour since the critical temperature and hysteresis do not change up to 0.22 GPa but an apparent linear dependence is obtained for higher pressures (up to 0.8 GPa) with a slope two times higher than the mean-field estimation.  相似文献   

16.
We have investigated the pressure-induced spectral changes and the proton exchange reactions of D(2)-H(2)O mixtures to 64 GPa using micro-Raman spectroscopy. The results show the profound difference in the rotational and vibrational Raman spectra of hydrogen isotopes from those of the pure samples, showing the vibrational modes at higher frequencies and continuing to increase with pressure without apparent turnover. This indicates the repulsive nature of D(2)-H(2)O interaction without hydrogen bonds between the two and, thus, interstitial fillings of D(2) molecules into the bcc-like ice lattice. The spectral analysis using the Morse potential yields a hydrogen bond distance of 0.734 ? at 6 GPa--slightly shorter than that in pure--attributed to the repulsive interaction. The pressure-dependent spectral changes suggest that the proton-ordering transition in the ice lattice occurs over a large pressure range between 28 and 50 GPa, which is substantially lower than that of pure ice (40-80 GPa). This again indicates the presence of high internal pressure arising from the repulsive interaction. The Raman spectra show evidences that the proton exchange occurs in various phases including in solid D(2) and H(2)O mixtures. Based on the time-dependent spectral changes, we obtained the proton exchange rates of k ~ 0.085 h(-1) at 0.2 GPa in fluid D(2) and water mixtures, k ~ 0.03 h(-1) and 0.003 h(-1) at 2 GPa and 4 GPa, respectively, in fluid D(2)-ice mixtures, and k ~ 10(-3) h(-1) at 8 GPa in solid D(2) and ice mixtures.  相似文献   

17.
We carried out molecular-dynamics simulations by using the two-phase coexistence method with the constant pressure, particle number, and enthalpy ensemble to compute the melting temperature of proton-disordered hexagonal ice I(h) at 1-bar pressure. Four models of water were considered, including the widely used TIP4P [W. L. Jorgensen, J. Chandrasekha, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys.79, 926 (1983)] and TIP5P [M. W. Mahoney and W. L. Jorgensen J. Chem. Phys.112, 8910 (2000)] models, as well as recently improved TIP4P and TIP5P models for use with Ewald techniques-the TIP4P-Ew [W. Horn, W. C. Swope, J. W. Pitera, J. C. Madura, T. J. Dick, G. L. Hura, and T. Head-Gordon, J. Chem. Phys.120, 9665 (2004)] and TIP5P-Ew [S. W. Rick, J. Chem. Phys.120, 6085 (2004)] models. The calculated melting temperature at 1 bar is T(m) = 229 +/- 1 K for the TIP4P and T(m) = 272.0 +/- 0.6 K for the TIP5P ice I(h), both are consistent with previous simulations based on free-energy methods. For the TIP4P-Ew and TIP5P-Ew models, the calculated melting temperature is T(m) = 257.0 +/- 1.1 K and T(m) = 253.9 +/- 1.1 K, respectively.  相似文献   

18.
When an emulsified 4.8 mol % LiCl-H2O solution was cooled under a pressure of 0.35 or 0.45 GPa and decompressed to 0.1 GPa at 142 K, slightly above its glass transition temperature (approximately 140 K at 0.1 GPa), its volume increased suddenly. This was regarded as an appearance of the low-density amorphous ice in the liquid solution as suggested by x-ray and Raman measurements, and this appearance corresponded to the high-to-low-density polyamorphic transition of pure H2O. Hysteresis was considered to accompany this volumetric change. The hysteresis of the liquid transition proves its first-order nature and, as for the solution, this suggests that the transition is a polyamorphic phase separation.  相似文献   

19.
Dielectric relaxation spectra of a metastable crystal phase formed on implosive and exothermic transformation of pressure-amorphized hexagonal ice have been measured in situ at 0.97 GPa pressure over a range of temperature. The metastable phase showed no relaxation peak at 130 K and 0.97 GPa. When heated at a fixed pressure of 0.97 GPa, it began to transform at approximately 145 K exothermally to a phase whose relaxation rate and equilibrium dielectric permittivity increased. A second, but slower exothermic transformation also occurred at approximately 175 K. After keeping at 213 K, the relaxation rate and equilibrium permittivity reached the known values of these two quantities for ice VI. Thus the metastable phase transformed to ice VI in two stages. It is conjectured that the intermediate phase in this transformation could be ice XII. The rate of transformation is not determined by the reorientational relaxation rate of water molecules in the ices.  相似文献   

20.
X-ray diffraction and optical spectroscopy techniques are used to characterize stable and metastable transformations of nitrogen compressed up to 170 GPa and heated above 2500 K. X-ray diffraction data show that varepsilon-N2 undergoes two successive structural changes to complex molecular phases zeta at 62 GPa and a newly discovered kappa at 110 GPa. The latter becomes an amorphous narrow gap semiconductor on further compression and if subjected to very high temperatures (approximately 2000 K) crystallizes to the crystalline cubic-gauche-N structure (cg-N) above 150 GPa. The diffraction data show that the transition to cg-N is accompanied by 15% volume reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号